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Measurement: Gauge it better to make it better



1897 (Lord Kelvin): famously stated,  
"There is nothing new to be discovered  
in physics now. All that remains is more  
and more precise measurement"

Measurement: Gauge it better to make it better

Classical physics at its pinnacle 
Impressive achievements with electromagnetism, mechanics, astronomy …

1897: Electron was discovered, beginning of a new era in physics …



Series of experiments gave birth to the Quantum Mechanics

1900 – Planck: Introduced energy quantization to solve blackbody radiation

1905 – Einstein: Explained the photoelectric effect using photons

1913 – Bohr: Proposed quantized orbits in the hydrogen atom

1922 – Stern–Gerlach: Showed spin quantization using silver atoms

1923 – Compton: Demonstrated photon momentum via X-ray scattering

1927 – Double-Slit (Electrons): Revealed superposition through interference pattern



The striking new world of Quantum Mechanics

Wave nature  
of QMQuantization

Superposition Entanglement

Probabilistic

Uncertainty



QUANTUM SENSING
                     —Exploit quantum phenomena for enhanced precision  



Quantum Sensing: Example-1 (Detection of gravitational wave at LIGO) 

Manipulate uncertainty from QM in light for in order to make more and more 
precise measurement  



Quantum Sensing: Example-1 (Detection of gravitational wave at LIGO) 

Manipulate uncertainty from QM in light in order to make more and more precise measurement  

• LIGO injects squeezed light—a special light state with reshaped quantum uncertainty—into its detector

• This squeezes uncertainty in the phase (where the signal is) and shifts it into the amplitude (less critical)

• The effect is like squeezing a balloon: squeezing one direction expands the other  



Quantum Sensing: Example-2 (Detection of Phase) 

Manipulate entanglement from QM in order to make more and more precise measurement  

GHZ State: |GHZN⟩ =
1

2
( |0⟩⊗N + |1⟩⊗N)

Phase encoding: |GHZN⟩ =
1

2
( |0⟩⊗N + eiNϕ |1⟩⊗N)

Sensitivity Improvement

Heisenberg limit (with GHZ):                    [variance in   ](Δϕ)2 ∝
1

N 2
ϕ

Standard quantum limit:                  (Δϕ)2 ∝
1
N



Limits of Precision Measurement
  —Fundamental bound



Estimation theory (quantum) 

Quantum system: A family of quantum states defined on a given Hilbert space ℋ and labeled 
by a parameter " living on a d-dimensional manifold ℳ, with the mapping: " ↦ % "

Quantum estimator:  &" is a self joint operator       Describes a quantum measurement followed 
by any classical data processing performed on the outcomes

ℳ copies of the state:

The ultimate precision attainable by quantum measurements: Quantum Cramer-Rao theorem

Δ!("" ≥ *" " #$:         Quantum Cramer − Rao bound

Independent of measurement

Varience Quantum Fisher information – A metric in ℳ

Δ!("" ≥ (ℳ*" " )#$



Quantum estimation: Inferring the estimator and the metric

Given an observable !", the signal-to-noise ratio (SNR) for estimating the parameter # as

Directly related to the mean-square error of the estimator: Useful in parameter estimation

Maximize the SNR over all possible observables   Obtain quantum Fisher Information (QFI):

Fidelity susceptibility

S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 1994 
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QUANTUM MANY-BODY SENSORS 
        (NEWLY EMERGING IDEAS)



Critical Quantum Sensors (core idea)

Quantum criticality (2nd order, topological, localization transitions)
Characterized by gap-to-gapless transitions, symmetry breaking, long-range correlations

Quantum resources for enhanced precision

Enhanced scaling of QFI at criticality: 

 : Standard quantum limit
: Heisenberg scaling

FQ ∝ Lβ

β = 1
β = 2

Syatem-size as a resource

Adiabatic quantum sensors:

Dynamical quantum sensors:

Involves evolution: FQ ∝ Lβtα Time as resource, along with system-size



Critical Quantum Sensors — What is Quantum Criticality?

Quantum criticality (2nd order, topological, localization transitions)
Characterized by gap-to-gapless transitions, symmetry breaking, long-range correlations

What Is a Phase Transition?

• In classical systems (like water freezing), transitions happen by thermal fluctuations at finite temperature.

What Makes Quantum Phase Transitions (QPT) Different?

• QPTs happen at absolute zero (T = 0)

• Caused by quantum fluctuations, not thermal energy

Key Features of QPT:

• Marked by a non-analytic change in the ground state

• Show critical points with long-range entanglement

• Governed by universal scaling laws and critical exponents

Why It Matters:

• Fundamental to understanding quantum matter

• Connects to quantum information, entanglement, and emergent phenomena



Critical quantum sensors: Formalism
System size as a resource

Around criticality

FQ = Lα/νg[L1/ν(λ − λc)] Finite-size scaling Ansatz

β = α/ν

FQ[λ] ∝ |λ − λc |α

L → ∞

FQ[λ = λc] ∝ Lβ

Finite size

ζ ∼ |λ − λc |−ν Diverging length scale at criticality



QUANTUM MANY-BODY SYSTEMS
     (COMPUTATION COMPLEXITIES)



SECRET Life of Matter 

Physical properties

Energy
Magnetism
Conductivity
Correlations
Entanglement
Dynamics

|0000…...0>
|0000.......1>
.
.
.
.
|11111.......1>

|Ψ> = C1 |0000…...0> + C2 |0000.......1> + ........+ CN |11111.......1>
Hilbert space dimension increases as 2L (NP-hard)

“… cannot be solved accurately when the number of particles exceeds about 10. No computer 
existing or that will ever exist can break this barrier because it’s a catatrophe of dimension ...”

Direct diagonalization can solve lattice systems with L ~ 30 

(Pines and Laughlin, 2000) 

Efitov’s group, ICFO 



Many-body Complexity and Information

Local gapped Hamiltonian respect area law: 

ψ = ci1i2 ...iL
i1i2 ...iL
∑ i1 i2 ... iL = Λα

α
∑ α A⊗ α B

S= −Tr(ρR logρR) = − Λα
2 log

α
∑ Λα

2

S(L) = Const.  (Hestings, 07)

Nature’s kindness: Entropy is naturally extensive,  area law is not 

Entanglement entropy

Δ
Gapped Gapless

HS
Distill relevant Hilbert space DMRG, MPS….

Only special classes of QMB systems can be solved efficiently

R

L \ R

δR

H = Hi,i+1
i∈L
∑ ;||Hi,i+1 ||≤ J

S(ρR) =O(| ∂R |)

1D: 



Quantum Simulators: Ideology

There exists may exotic quantum phenomena with important applications

Developing full understandings via classical computer are difficult (often impossible) due to 
inherent many-body complexity

May be we can use a simpler and better controllable quantum system to simulate and understand 
the target system. Such a system would thus work as quantum computer of special purpose, 
i.e. QUANTUM SIMULATOR 

M Lewenstein, A Sanpera, V Ahufinger, B Damski, A Sen and U Sen, Adv. Phys. 2007  
I. Bloch, J. Dalibard, and W. Zwerger, RMP, 2008
M. Lewenstein, A. Sanpera, and V Ahufinger, Oxford University Press, 2012



Quantum Simulations on Physical Platforms

Engineered quantum materials …



              AMO PLATFORMS
 (AS A NEW CLASS OF QMB SENSING DEVICES)



Neutral atoms can be composite bosons or composite fermions

They can be trapped optically via a combination of 
far detuned laser with spatially varying intensity  

They can be cooled to sub-nano temperature via several cooling techniques

They can be loaded into optical lattice

Neutral Atoms

d = αE
Udip= d . E

𝞈0

𝞈L

𝝙=𝞈0-𝞈L>>𝚪0

Review: R. Grimm et al., Adv. At. Mol. Opt. Phys. 2000 [for cooling and trapping of neutral atoms] 

Steven Chu, Claude Cohen-Tannoudji and William D. Phillips 1997 Nobel
Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman 2001 Nobel

I. Bloch’s group



PRINCIPLE OF EMERGENCE

Periodic potential made by ion  <->  Periodic potential made by optical interference
                                    Electron  <-> Atom

e-

• ULTRACOLD ATOMS BOUND TO LIGHT
• ION TRAPS 
• SUPERCONDUCTING DEVICES  
• PHOTONIC DEVICES

Efitov’s group, ICFO 



Dilute atomic gas (n ~ 1012-1015 atoms/cm3)

•Two-body collisions play important role
•Three-body collisions are rare
•s-wave scattering (Universality)     

Unprecedented control of cold atoms in optical lattice

a3d
aa

a3d
aa > 0

a3d
aa < 0

COOPER PA
IR

MOLECULE

Weak attraction Weak repulsionStrong interaction

External parametersFeshbach resonance

as = − limk→0
tan(δk )
k

Interaction can be tuned: 

Tunneling can be tuned:  Control laser intensity …

Different statistics:  Fermions, bosons, mixture …



Why ultracold atoms?

Spectacular success in simulating quantum many-body physics

A. Mazurenko et. al., Nature (2017)



             AMO PLATFORMS
Ex. 1: Localization in fermonic Quasiperiodic lattice is resource for quantum sensing

Roati et al., Nature 453, 895 (2008) — first observation of localization in quasiperiodic lattice
Schreiber et al., Science 349, 842 (2015) — first realization of MBL with quasiperiodic potential



Localization-delocalization transition
The system

!"!" = −%&
"
(̂"ϯ(̂"$% + ℎ. (. + ,&

"
cos 2123 (̂"ϯ(̂" + U&

"
56" 56"$%

An irrational number

• Single-particle case: Characterized by an energy independent localization transitions at 
a finite modulation strength, &! = 2

A. Sahoo, U. Mishra and D. Rakshit, Localization Driven Quantum Sensing, Phys. Rev. A 109, L030601 (2024)

https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=4PvzvoIAAAAJ&sortby=pubdate&citation_for_view=4PvzvoIAAAAJ:wGzT3bKASkAC


Fermions in quasiperiodic lattice

Localization-delocalization transition

• Many-body case: Supports a many-body localization transition at a finite modulation 
strength, !! > 2

A. Sahoo, U. Mishra and D. Rakshit, Localization Driven Quantum Sensing, Phys. Rev. A 109, 
L030601 (2024)

U/J=1

https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=4PvzvoIAAAAJ&sortby=pubdate&citation_for_view=4PvzvoIAAAAJ:wGzT3bKASkAC


Single-particle case

Observable Fisher Information: Scaling

• !!"#∗ at "∗ is well beyond SQL : QUANTUM ADVANTAGE!

L=21, 55, 89, 233, 377, 987 

Charge-density wave operator

A. Sahoo, U. Mishra and D. Rakshit, Localization Driven Quantum Sensing, Phys. Rev. A 109, L030601 (2024)

https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=4PvzvoIAAAAJ&sortby=pubdate&citation_for_view=4PvzvoIAAAAJ:wGzT3bKASkAC


Many-body case: Half-filled system
Observable Fisher Information: The clue …

Initial state leaves its imprint       Ordering is maintained

Engineer dynamical Sensors …M. Schreiber, …., I. Bloch, Science 349, 842 (2015)



Time dependence of  due to a sudden quench  
for L= 55, 89 and 233

Fcdw

A. Sahoo, U. Mishra and D. Rakshit, Localization Driven Quantum Sensing, Phys. Rev. A 109, L030601 (2024)

https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=4PvzvoIAAAAJ&sortby=pubdate&citation_for_view=4PvzvoIAAAAJ:wGzT3bKASkAC


Cold Bosons in Optical Lattice 

Ĥ = − t∑ b̂†
i b̂i+1 + U∑ ̂ni( ̂ni+1 − 1)

Ĥ = ∫ dx ψ̂† (−
ℏ2

2m
∂2

x + V0 sin2(kx)) ψ̂ (x) +
g
2

ψ̂†(x)2ψ̂ (x)2

Shallow optical potential ( )V0 ≤ 5ER

Deep lattice regime ( )V0 ≥ 5ER

Continuum Schrödinger or Gross-Pitaevskii equation

Bose-Hubbard (tight-binding limit) 



             AMO PLATFORMS
Ex. 2: Stark localization in bosonic tilted lattice—super-Heisenberg scaling and sensing faint potentials (signals) 

J. Simon, .…M. Grainer, Nature 472, 307 (2011) → Quantum simulation of a ferromagnetic domain wall using a tilted optical lattice in a 2D setup
A. Rubio-Abadal,…, I. Bloch, C. Gross, Phys. Rev. X 9, 041014 (2019) → Demonstrated many-body localization in a tilted (Stark) optical lattice 
without disorder
K. Morong,…, C. Monroe,  Nature 599, 393 (2021) → Observation of localization due to a linear potential in a clean system (no disorder).



Cold Bosons in TILTED Optical Lattice: Stark Localization 

Ĥ = − t∑ b̂†
i b̂i+1 + U∑ ̂ni( ̂ni+1 − 1) + V0 ∑ i ̂ni

Ĥ = ∫ dx ψ̂† (−
ℏ2

2m
∂2

x + V sin2(kx) + V0 |x |) ψ̂ (x) +
g
2

ψ̂†(x)2ψ̂ (x)2

Continuum Schrödinger or Gross-Pitaevskii equation under tilt

Bose-Hubbard (tight-binding limit) under tilt

Localization in the limit of  in the thermodynamic limit (non-interacting system)V0 → 0



Cold Bosons in TILTED Optical Lattice: Stark Localization 

Strength of linear potential ( ) increases (g=0) V0

Strength of interaction (g) increases for fixed tilt

Continuum limit behavior

A. Debnath, M. Gajda and Debraj Rakshit, Tilt-Induced Localization in Interacting Bose-Einstein Condensates for Quantum Sensing, 
arXiv:2506.06173

https://arxiv.org/abs/2506.06173


Cold Bosons in TILTED Optical Lattice: QFI

Quantum sensing of faint signals
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FQ ∼ Lβ : super-Heisenberg scaling

A. Debnath, M. Gajda and Debraj Rakshit, Tilt-Induced Localization in Interacting Bose-Einstein Condensates for Quantum Sensing, arXiv:2506.06173

https://arxiv.org/abs/2506.06173


CRITICAL QUANTUM SENSORS—
What is the origin of quantum advantage?



CRITICAL QUANTUM SENSORS—
What is the origin of quantum advantage?

Quantum criticality is associated with many key concepts: 
 Gap closing, symmetry-breaking, long-range correlations

Until now almost all critical sensors are associated with gap closing … FQ ≤
L2

Δ2

Can symmetry-breaking alone may give rise to quantum advantage?

Related references: 

V. Montenegro et. al., Review: Quantum Metrology and Sensing with Many-Body Systems, 
Physics Reports 1134, 1(2025) 

K. D. Agarwal, S. Mondal, A. Sahoo, D. Rakshit, A. S. De and U. Sen,  
Quantum sensing with ultracold simulators in lattice and ensemble systems: a review,  
arXiv:2507.06348 

P. Abiuso, P. Sekatski, J. Calsamiglia, and M. Perarnau-Llobet, PRL 134, 010801 (2025)

https://arxiv.org/abs/2507.06348


Kitaev model, 1D  p-wave superconductor

Ĥ1 = −
L

∑
j=1

( ̂c†
j ̂cj+1 + h . c . ) − μ

L

∑
j=1

( ̂c†
j ̂cj −

1
2 )

ĤΔ =
Δ
2

L

∑
j=1

( ̂c†
j ̂c†

j+1 + h . c . )
Ĥ = Ĥ1 + ĤΔ

|μ |0 2

Δ

w = − 1

w = + 1

w = 0

C= ( ) 
Gapless

μc, δΔ

|μ |0 2

w = − 1

w = + 1

w = 0
A

B

B = ( ) 
Gapless 

μc, δΔ1

A = ( ) 
Gapless

μc, δΔ2

Δ

C

Multi-Critical Multi-Parameter Quantum Sensors Driven by Symmetry-Breaking

S Mondal, A Sahoo, U Sen and D Rakshit, Multicritical quantum sensors driven by symmetry-breaking, arXiv:2407.14428

https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=4PvzvoIAAAAJ&sortby=pubdate&citation_for_view=4PvzvoIAAAAJ:8RAEygVn5_EC


Multi-Critical Multi-Parameter Quantum Sensors Driven by Symmetry-Breaking

Multi-parameter Estimation—
                                                Compute Quantum Fishsher Information Matrix

|μ |0 2

Δ

w = − 1

w = + 1

w = 0

C= ( ) 
Gapless

μc, δΔ

|μ |0 2

w = − 1

w = + 1

w = 0
A

B

B = ( ) 
Gapless 

μc, δΔ1

A = ( ) 
Gapless

μc, δΔ2

Δ

C

δμ2 + δΔ2 ≥
1
m

𝒢−1

Quantum advantage via symmetry-breaking

S Mondal, A Sahoo, U Sen and D Rakshit, Multicritical quantum sensors driven by symmetry-breaking, arXiv:2407.14428

https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=4PvzvoIAAAAJ&sortby=pubdate&citation_for_view=4PvzvoIAAAAJ:8RAEygVn5_EC


Concluding Remarks

• Engineered quantum materials are used to push boundaries of quantum metrology, where AMO platforms 
lead the pack 

• Utility of quantum phenomena, such as spin squeezing, quantum criticality, quantum phase transition 
(including second-order, topological, and localization transitions), multicriticality, interferometry, time-
crystal, and quantum scar, along with quantum coherence, and entanglement, in diverse quantum 
metrological protocols including thermometry, inertial sensors, gravimetry, magnetometry, precision clocks 

• The true challenge on the experimental front lies in the preparation and control of scalable quantum 
simulators with long coherence time 

• With steady progress in innovative techniques, a promising future awaits in which quantum sensors are 
poised to achieve near-optimal precision and broad practical impact
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