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Overview
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•Computing… what is it? 
•Quantum computing… what is it? 
•Quantum machine learning
•Quantum genetic Algorithms (QAG)



What is computing?

We can simulate algorithms blindly
- ultimately interpretation is required.
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• First, what is computing? One perspective - it is physical simulation of algorithms 
coupled to interpretation. We manipulate a physical system according to rules. A 
metaphysical tower of concepts then allows us to interpret the results.

Certain physical systems can be 
manipulated very quickly - making 
algorithm simulation also very fast.



What is classical computing?
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What is quantum computing?
• Quantum computing is using quantum systems to 

simulate our algorithms.
• Challenges are rooted in the fact that quantum 

systems are delicate. And algorithms are non- 
obvious.

• Multiple, “competing” platforms for quantum 
computation exist. The ultimate goals are scale 
and quantum error correction.

https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.htm
l https://sqms.fnal.gov/research/
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https://www.honeywell.com/en-us/company/quantu
m https://www.xanadu.ai/hardware

There are many ways to leverage quantum 
systems to simulate an algorithm. Features of 
quantum measurement mean the calculations 
are probabilistic.

http://www.honeywell.com/en-us/company/quantum
http://www.honeywell.com/en-us/company/quantum
http://www.xanadu.ai/hardware


What is quantum computing?
• At heart, quantum computing is unitary evolution of quantum states.
• It is distinguished by the following features:

- Entanglement
- Unitary evolution
- Superposition of states
- Reversible computation
- Probabilistic computation
- Exponential Hilbert spaces
- Challenges with state coherence
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Qubits

Quantum operators rotate the vector’s direction.
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What is quantum computing?
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What is quantum computing?

Super hand-wavy “quantum advantages”
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•

• Superposition lets us create a sum state with two operations 
instead of four.
Entanglement means we can manipulate the entire state vector 
with one operation.

• Exploiting these operations with provable speedup is actually 
pretty hard! (Consider measurement if nothing else…)

Circuit composer: https://quantum-computing.ibm.com/



Quantum machine learning
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Quantum machine learning
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Quantum machine learning
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• Chemical simulation
• Quantum matter 

simulation
• Quantum control
• Quantum networks
• Quantum metrology



Quantum machine learning: The power of Data
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Classical Machine Learning Overview
Machine learning involves deriving patterns from data to interpret new inputs, crucial for tasks like image recognition and strategy 

optimization. It processes vast amounts of information, adapting to human needs without explicit programming.

Supervised Learning
Infers mappings from labeled training data, 

primarily for pattern classification.

Unsupervised Learning
Discovers patterns in data without prior 

examples, focusing on tasks like data 

clustering.

Reinforcement Learning
Optimizes strategies based on reward 

functions, common in intelligent agents 

and games.



Quantum Machine Learning Fundamentals
Quantum computing manipulates quantum systems to process information, leveraging superposition for computational speedup. Quantum 

machine learning adapts classical algorithms to run on quantum computers, aiming for greater efficiency.

Qubit States

The basic unit is the qubit,                                , allowing operations on 

multiple states simultaneously.

Quantum Gates

Unitary transformations like XOR and SWAP gates manipulate qubit states, 

expressed as matrices.

Figure 3: Representation of qubit states, unitary gates and measurements in 

the quantum circuit model and in the matrix formalism.



Quantum k-Nearest Neighbor Methods
The k-nearest neighbor algorithm classifies new inputs based on the majority class of their 'k' closest neighbors in a training set. Quantum versions focus 

on efficiently evaluating classical distances using quantum algorithms.

Figure 4: Illustration of the kNN method of pattern classification.

 Fidelity-Based 

Distance (Swap Test)

Let ∣ψa⟩ and ∣ψb⟩ be quantum states corresponding to vectors a ⃗and 

b.⃗ The swap test is used to compute fidelity (i.e., overlap):

                  

Figure 5: Quantum circuit representation of a swap test routine.



Quantum Support Vector Machines (SVM)
SVMs find an optimal hyperplane to discriminate between two class regions, serving as a decision boundary. Quantum computing aims to speed up 

the computationally expensive kernel calculations.

Figure 6: A support vector machine finds a hyperplane (here a line) 

with maximum margin to the closest vectors.

Optimization Problem
The goal is to maximize the margin between the hyperplane and the 

closest data points (support vectors), subject to classification constraints:

Quantum approaches claim faster inner product evaluation, crucial for 

kernel methods.



Quantum Clustering Algorithms
Clustering divides unlabeled feature vectors into subsets. Quantum algorithms for clustering, like k-means, leverage quantum properties to find 
optimal cluster assignments and centroids. 

🔹 Quantum Approaches to Clustering

Several quantum routines aim to speed up or improve clustering, especially via distance computation and optimization.

1. Quantum k-Median
➤ Procedure:
Quantum distance oracle: Computes total distance from one state ∣ψi⟩ to others in the cluster:

                                       
 

Use quantum minimum finding algorithm to find:

The winner becomes the new median of the cluster.
🔹 But note: Oracle implementation is not fully specified in the original proposal.

Figure 7: The alternating steps of a k-means algorithm.



Quantum Neural Networks 
Researchers are exploring quantum versions of neural networks and decision trees, aiming to leverage quantum principles for improved pattern classification and 

learning schemes.

Figure 8: Illustration of a feed-forward neural network with a sigmoid activation 

function for each neuron.

Feed-forward networks use sigmoid activation functions to classify patterns. 

Quantum versions explore integrating quantum mechanisms, though a fully 

efficient method is still sought.



Quantum Decision Trees
Classifiers that use a tree structure with decision functions at each node to classify inputs. Quantum decision 
trees propose using quantum feature states and von Neumann entropy for graph partitioning.

Quantum Feature State:

Node Operation:

At each node: measure an attribute (quantum observable).
This divides the quantum training states into subsets.

Partition Evaluation:
Use von Neumann Entropy instead of Shannon entropy:

              

Limitation:
The exact mechanism of splitting quantum states at nodes is not fully defined.
Conceptual framework is introduced, but implementation is incomplete.

Figure 9: A simple example of a decision tree for the classification of emails.



Bayesian Methods and Hidden Quantum Markov Models
Stochastic methods like Bayesian decision theory and Hidden Markov Models are being translated into quantum physics, offering new approaches for pattern classification and 

quantum state discrimination.

Bayesian Theory

Calculates the probability of an input belonging to a certain class using Bayes' formula:

Used for quantum state classification, discriminating between quantum states from an 

unknown source.

Figure 10: A hidden Markov model is a stochastic process of state transitions.

Hidden Markov Models

Markov processes where system states are accessible only through observations. 

Hidden quantum Markov models generalize classical models, offering richer dynamics 

and potential for quantum simulation.



Classical Genetic Algorithm (CGA)



Why Quantum Genetic Algorithm (QGA)

● Classical Genetic Algorithms (GAs) face issues like:

Slow convergence

Local optima

● Quantum Computing provides new tools: Qubit, Rotation Gate, Superposition

● Objective: Improve QGA performance in terms of speed and accuracy



Quantum Genetic Algorithm (QGA)

● QGA = Genetic Algorithm + Quantum Computing Concepts

● Inspired by quantum mechanics: superposition, probability 
amplitudes, and rotation operators

● Each individual (chromosome) is encoded as qubits instead 
of classical bits

● Enhances diversity, parallelism, and global search

Example:

Instead of representing a gene as 0 or 1, QGA uses:



Quantum Rotation Gate

● Used to update qubit states towards the better solution.

● Rotation Gate matrix:

● Update rule:



Rotation Angle Direction Using Determinant

● Determines rotation direction without lookup table.

● Determinant used:

● If A>0 → rotate clockwise

● If A<0 → rotate counterclockwise



Self-Adaptive Rotation Angle

● Rotation angle decreases with generations to balance exploration and exploitation.

● Formula: 

● Larger angle in early stages (diversification).

● Smaller angle in later stages (intensification).



Quantum Mutation

● With small probability (e.g., 0.001), swap α and β.

● Helps maintain population diversity.

● Mutation prevents premature convergence to local optima.



Quantum Disaster Operator

● Applied when the algorithm stagnates (no improvement for many 
generations).

● Randomly reinitializes part of the population (except the best individual).

● Helps the algorithm escape from local optima traps.



Fitness Function Example

● Example used in the research paper:

● The goal is to maximize this function using QGA.
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