
Post-Quantum Cryptography
Presented At:

5-Day Symposium and Training Workshop on
Quantum Information & Technologies (QIT)

Jointly Organized by IIIT Allahabad and C-DAC Pune
July 24-28, 2025

Presented By

Dr. Soumyadev Maity, Assistant Professor
Department of Information Technology,

Indian Institute of Information Technology, Allahabad.

1

Overview

● Objective of Information Security
● Fundamentals of Classical Cryptography
● Basics of Quantum Computing & Threat to Classical Cryptography
● Overview of Post-Quantum Cryptography
● Future Research Demands

2

Objective of Information Security

Information
Security

Network
Security

Security of
Standalone

System

Sender
(A)

Receiver
(B)

m

● What do we mean by secure Communication?
○ Basic Security Objectives:-

■ Confidentiality (C)

■ Integrity (I)

■ Authentication (A)

■ Non-Repudiation

○ Other Security Objectives:-

■ Availability

■ Authorization

Cryptography

Symmetric
Asymmetric

Sender
(A)

Receiver
(B)

K K

Sender
(A)

Receiver
(B)

K1 K2

NOTE: K2 is the INVERSE of K1

3

Cryptography

Asymmetric

Symmetric

Encryption Digital Signature Encryption MAC

Decryption
Signature

Verification
Decryption MAC

Basic Cryptographic Techniques

Hash

4

Basic Cryptographic Techniques

Confidentiality Integrity Authentication Non-Repudiation

Symmetric
Encryption-
Decryption

YES NO YES NO

Asymmetric
Encryption-
Decryption

YES NO YES NO

Digital
Signature &
Verification

NO YES YES YES

MAC
Generation &
Verification

NO YES YES NO

5

Basic Cryptographic Techniques

Proving Soundness of a Crypto. Scheme

Problems

Solvable
Problems

Unsolvable
Problems

Easy
Problems

Hard
Problems

Existing Most
Efficient Algo. is
Polynomial-time:
O(k), O(k^2) etc.

● Existing Most Efficient Algo. is Not
Polynomial-time: O(2^k), O(2^log(k)) etc.

● E.g.: N-Queen Problem, TSP problem, etc.

k : size of the input in no. of bits

6

Basic Cryptographic Techniques

Proving Soundness of a Crypto. Scheme

● We need to show that Algo. B is also polynomial time
● We need to show that Algo. B has non-negligible probability of success
● Algo. B may call Algo. A polynomial no. of times
● Hard problems used in cryptography:

○ Integer factorization problem
○ Discrete log problem
○ Elliptic curve discrete log problem
○ Computational Diffie-Hellman Problem
○ Etc.

● Example: Integer factorization Problem:-
Suppose : n = p x q, where p, q are large primes Problem 1:

Given: p, q
Compute: n
An Easy Problem

Problem 2:
Given: n
Compute: p (or q)
A Hard Problem

7

Basic Cryptographic Techniques

Attacker’s
Algo

A

Hard
Problem
Solving

Algo
B

Global values

Output / Response

Instance of a hard
problem

Solution to the
problem instance

Random Number
Sequence

Input / Challenge

Proving Soundness of a Crypto. Scheme

8

Basics of Quantum Computing & Threat to Hard Problems

● Basics of Quantum Computation
○ qubits
○ Superposition Theorem
○ Entanglement
○ No Cloning Theorem

● Shor’s Algorithm
○ Uses Quantum Fourier Transformation to Find Order of an Element
○ Can solve integer factorization Problem in Polynomial Time
○ Can Solve Discrete Log Problem in Polynomial Time

9

● Public Key Cryptography - Depends on Hard Problem
○ Not secure against Quantum Attacker

● Symmetric Cryptography - Find Preimage Only Brute-Force Attack
○ Grover’s Algo: reduces search space quadratically O(2^n) to

O(2^(n/2))
● Hash Functions - Find Collision using Brute-Force Attack

○ Grover’s Algo: reduces search space quadratically O(2^(n/2)) to
O(2^(n/3))

Basics of Quantum Computing & Threat to Hard Problems

10

Overview of Post-Quantum Cryptography

● Post-Quantum Cryptography
○ Uses mathematical problem - assumed to be hard in presence of quantum computer

■ lattice based cryptography (Used mathematical problems: shortest vector problem

and learning with errors).

● Example: NTRU, Kyber

■ Code-based cryptography (Used mathematical problems: decoding random linear

codes)
● Example: McEliece cryptosystem

■ Multivariate polynomial cryptography: utilizes the challenge of solving systems of
multivariate polynomial equations.
● Example: Rainbow, HFE (Hidden Field Equations)

■ Hash-based cryptography: uses difficulty of finding collisions in hash functions.
● Example: XMSS (eXtended Merkle Signature Scheme), LMS (Leighton-Micali

Signature)
■ Isogeny-based cryptography: Computing Isogenies Between Elliptic Curves:

Finding a map between elliptic curves that preserves their structure.
● Example: Supersingular Isogeny Key Encapsulation (SIKE)

11

Lattice based cryptography

v1

v2

V1 + v2

V2 + v1

2V1 + v2

V1 + 2v2

-V1 + 2v2

12

Lattice based cryptography

v1

v2

A Two-Dimensional Lattice: a.V1 + b.V2; a, b in Base-Field

Shortest Vector Problem (SVP): which point is
closest to the Origin (not including it)
Closest Vector Problem (CVP): which point is
closest to a given point (not including it)

13

Lattice based cryptography

A Three-Dimensional Lattice with three three-dimensional Vectors V1, V2 and V3
In General : n-Dimensional Lattice with n n-dimensional Vectors V1, …, Vn

CVP w.r.t. A “Good” Basis

CVP w.r.t. A “Bad” Basis

GGH Encryption Scheme is designed based on Good and Bad
Basis
 Goldreich, Goldwasser, and Halevi

14

Lattice based cryptography

● GGH Encryption Scheme is designed based on Good and Bad Basis
● GGH is not fully secure

● More Secure Approaches:-
○ Learning with Errors (LWE) Problem

■ Given a set of noisy linear equations, it is hard to determine the original secret values

○ Ring LWE Problem
■ more efficient variant of LWE used in practical cryptographic schemes

15

Lattice based cryptography

Learning with Errors (LWE) Problem

<s1 = 10, s2 = 82, s3 = 50, s4 = 5> a1.s1+ a2. s2+ a3. s3+ a4.s4 ≣ c mod p; a1, a2, a3, a4 ∊ Zp

77.s1 + 7.s2 + 28.s3 + 23.s4 ≣ 11 (mod 89)
21.s1 + 19.s2 + 30.s3 + 48.s4 ≣ 37 (mod 89)
4.s1 + 24.s2 + 33.s3 + 38.s4 ≣ 21 (mod 89)
8.s1 + 20.s2 + 84.s3 + 61.s4 ≣ 84 (mod 89)

Learning Without Error

Secret Vector

Anyone Can Calculate the Secret Vector
from the above Set of Equations

Equations With Error

77.s1 + 7.s2 + 28.s3 + 23.s4 ≣ 11 + 2 ≣ 13 (mod 89)
21.s1 + 19.s2 + 30.s3 + 48.s4 ≣ 37 - 1 ≣ 36 (mod 89)
4.s1 + 24.s2 + 33.s3 + 38.s4 ≣ 21 - 2 ≣ 19 (mod 89)
8.s1 + 20.s2 + 84.s3 + 61.s4 ≣ 84 + 2 ≣ 86 (mod 89)

Hard to find the Secret Vector from the
above Set of Equations

Secret Vector: Private-Key

Set of Equns with Error: Public-Key

16

Lattice based cryptography

Learning with Errors (LWE) Problem

<s1 = 10, s2 = 82, s3 = 50, s4 = 5>

Private-Key: Secret Vector

Public-Key

77.s1 + 7.s2 + 28.s3 + 23.s4 ≣ 11 + 2 ≣ 13 (mod 89)
21.s1 + 19.s2 + 30.s3 + 48.s4 ≣ 37 - 1 ≣ 36 (mod 89)
4.s1 + 24.s2 + 33.s3 + 38.s4 ≣ 21 - 2 ≣ 19 (mod 89)
8.s1 + 20.s2 + 84.s3 + 61.s4 ≣ 84 + 2 ≣ 86 (mod 89)
—--
Sum of the Above Eqns.:-

21.s1 + 70.s2 + 86.s3 + 81.s4 ≣ 64 + 1 ≣ 65 (mod 89)

Encryption of bit ‘0’:-
21.s1 + 70.s2 + 86.s3 + 81.s4 ≣ 65 (mod 89)

Encryption of bit ‘1’:-
21.s1 + 70.s2 + 86.s3 + 81.s4 ≣ 65 + 44 = 20 (mod 89)

Step-1: Plug-in the values in the Eqn.:-

21.10 + 70.82 + 86.50 + 81.5 ≣ 64 (mod 89)

Step-2: Subtract the RHS from the Received Value:-

65 - 64 ≣ 1 (mod 89) : Close to ZERO ===> Interpreted as ‘0’
65 - 20 ≣ 45 (mod 89): Faraway from ZERO ===> Interpreted as ‘1’

Encryption

Decryption

17

Lattice based cryptography

Learning with Errors (LWE) Problem

Combined with Integer Lattice Problem
● RHS of the equations are encoded as a lattice with small error
● Obtaining the correct equation reduces to solving closest vector problem

v
1

v
2

18

Lattice based cryptography

Constructions Using Lattice Based Cryptography:-
● Public-key encryption (e.g., Kyber, NTRU)
● Digital signatures (e.g., Dilithium, Falcon)
● Fully homomorphic encryption (FHE)
● Zero-knowledge proofs
● Identity-based encryption

Challenges:-
● Larger key sizes compared to RSA/ECC
● Implementation complexity in hardware and software

NIST Standards:-
● Kyber (encryption)
● Dilithium (signatures)

19

20

Code-based cryptography

Error correction codes

• Digital media is exposed to memory corruption.

• Many systems check whether data was corrupted in transit:
• ISBN numbers have check digit to detect corruption.
• ECC RAM detects up to two errors and can correct one error.

64 bits are stored as 72 bits: extra 8 bits for checks and recovery.

• In general, k bits of data get stored in n bits, adding some redundancy.

• If no error occurred, these n bits satisfy n − k parity check equations; else can correct errors
from the error pattern.

• Good codes can correct many errors without blowing up storage too much;
offer guarantee to correct t errors (often can correct or at least detect more).

Example: Hamming Code

Slides from Tanja Lange,Tung Chou and Christiane Peters

Hamming Code?

● Linear error-correcting code
● Developed by Richard Hamming in 1950

● Detects & corrects single-bit errors.

● Adds parity bits at power-of-2 positions

○ Parity bits at positions 1, 2, 4 (powers of 2).

○ Data bits fill remaining positions.

○ For (7,4): [P1 P2 D1 P3 D2 D3 D4]

Code-based cryptography

An Example :-

● Data bits: 1 0 1 1 (D1 D2 D3 D4).

● Codeword layout: [P1 P2 D1 P3 D2 D3 D4].

Parity Coverage:-

● P1 covers bits 1,3,5,7

● P2 covers bits 2,3,6,7

● P3 covers bits 4,5,6,7

● These sets define the parity check conditions

Positions: 1 2 3 4 5 6 7
1: 0 0 1
2: 0 1 0
3: 0 1 1
4: 1 0 0
5: 1 0 1
6: 1 1 0
7: 1 1 1

Code-based cryptography

Calculate Parity Bits:-
 Bit Position: [1 2 3 4 5 6 7]
● Data bits placed: [_ _ 1 _ 0 1 1]

● P1: bits 1,3,5,7 → ? 1 0 1 → sum=2 → P1=0

● P2: bits 2,3,6,7 → ? 1 1 1 → sum=3 → P2=1

● P3: bits 4,5,6,7 → ? 0 1 1 → sum=2 → P4=0

● Final: [0 1 1 0 0 1 1].

Generator Matrix (G)

● G (7,4) = [I | P]:

[1 0 0 0 | 1 1 0]

[0 1 0 0 | 1 0 1]

[0 0 1 0 | 1 0 0]

[0 0 0 1 | 0 1 1]

● Encode: codeword = data × G.

Code-based cryptography

Parity Check Matrix (H)

● H = [Pᵗ | I]:

[1 1 1 0 | 1 0 0]

[1 0 0 1 | 0 1 0]

[0 1 0 1 | 0 0 1]

● Check: syndrome = H × codewordᵗ.

Error Detection Example

● Received: 0 1 1 0 1 1 1 (bit 5 flipped)

● Syndrome = H × receivedᵗ → gives non-zero.

● Result tells position of the error bit.

● Example: syndrome = 101 → binary 5 → bit 5 is wrong.

Linear codes

A binary linear code C of length n and dimension k is a k-dimensional
subspace of IFn

2.
C is usually specified as

• the row space of a generating matrix G ∈ IFk×n
2

C = {mG |m ∈ IFk
2}

• the kernel space of a parity-check matrix H ∈ IF
(n−k)×n
2

C = {c|Hc� = 0, c ∈ IFn
2}

Leaving out the � from now on.

• Names: code word c, error vector e, received word b = c+ e.

Tanja Lange Code-based cryptography I 3

Example: Hamming code

Parity check matrix (n = 7, k = 4):

H =



1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1




An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies these
three equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means

Tanja Lange Code-based cryptography I 4

Example: Hamming code

Parity check matrix (n = 7, k = 4):

H =



1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1




An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies these
three equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means b1 flipped.

Tanja Lange Code-based cryptography I 4

Example: Hamming code

Parity check matrix (n = 7, k = 4):

H =



1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1




An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies these
three equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means b1 flipped.
In math notation, the failure pattern is H · b.

Tanja Lange Code-based cryptography I 4

Linear codes are linear

Example with generator matrix:

G =



1 0 1 0 1
1 1 0 0 0
1 1 1 1 0




c = (111)G = (10011) is a code word.

Tanja Lange Code-based cryptography I 5

Linear codes are linear

Example with generator matrix:

G =



1 0 1 0 1
1 1 0 0 0
1 1 1 1 0




c = (111)G = (10011) is a code word.

Linear codes are linear:
The sum of two code words is a code word:

Tanja Lange Code-based cryptography I 5

Linear codes are linear

Example with generator matrix:

G =



1 0 1 0 1
1 1 0 0 0
1 1 1 1 0




c = (111)G = (10011) is a code word.

Linear codes are linear:
The sum of two code words is a code word:

c1 + c2 = m1G +m2G = (m1 +m2)G .

Same with parity-check matrix:

Tanja Lange Code-based cryptography I 5

Linear codes are linear

Example with generator matrix:

G =



1 0 1 0 1
1 1 0 0 0
1 1 1 1 0




c = (111)G = (10011) is a code word.

Linear codes are linear:
The sum of two code words is a code word:

c1 + c2 = m1G +m2G = (m1 +m2)G .

Same with parity-check matrix:

H(c1 + c2) = Hc1 + Hc2 = 0 + 0 = 0.

Tanja Lange Code-based cryptography I 5

Hamming weight and distance

• The Hamming weight of a word is the number of nonzero
coordinates.

wt(1, 0, 0, 1, 1) = 3

• The Hamming distance between two words in IFn
2 is the number of

coordinates in which they differ.

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) =

Tanja Lange Code-based cryptography I 6

Hamming weight and distance

• The Hamming weight of a word is the number of nonzero
coordinates.

wt(1, 0, 0, 1, 1) = 3

• The Hamming distance between two words in IFn
2 is the number of

coordinates in which they differ.

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = 1

Tanja Lange Code-based cryptography I 6

Hamming weight and distance

• The Hamming weight of a word is the number of nonzero
coordinates.

wt(1, 0, 0, 1, 1) = 3

• The Hamming distance between two words in IFn
2 is the number of

coordinates in which they differ.

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = 1

The Hamming distance between x and y equals the Hamming
weight of x+ y:

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = wt(0, 1, 0, 0, 0).

Tanja Lange Code-based cryptography I 6

Minimum distance

• The minimum distance of a linear code C is the smallest Hamming
weight of a nonzero code word in C .

d = min
0�=c∈C

{wt(c)} = min
b�=c∈C

{d(b, c)}

• In code with minimum distance d = 2t + 1, any vector x = c+ e
with wt(e) ≤ t is uniquely decodable to c;
i. e. there is no closer code word.

Tanja Lange Code-based cryptography I 7

Decoding problem

Decoding problem: find the closest code word c ∈ C to a given x ∈ IFn
2,

assuming that there is a unique closest code word. Let x = c+ e. Note
that finding e is an equivalent problem.

• If c is t errors away from x, i.e., the Hamming weight of e is t, this
is called a t-error correcting problem.

• There are lots of code families with fast decoding algorithms, e.g.,
Reed–Solomon codes, Goppa codes/alternant codes, etc.

• However, the general decoding problem is hard: Information-set
decoding (see later) takes exponential time.

Tanja Lange Code-based cryptography I 8

The McEliece cryptosystem I

• Due to Robert McEliece 1978.

• Let C be a length-n binary Goppa code Γ of dimension k with
minimum distance 2t + 1 where t ≈ (n − k)/ log2(n); original
parameters (1978) n = 1024, k = 524, t = 50.

• The McEliece secret key consists of a generator matrix G for Γ, an
efficient t-error correcting decoding algorithm for Γ; an n × n
permutation matrix P and a nonsingular k × k matrix S .

• n, k , t are public; but Γ, P , S are randomly generated secrets.

• The McEliece public key is the k × n matrix G � = SGP .

Tanja Lange Code-based cryptography I 9

The McEliece cryptosystem II

• Encrypt: Compute mG � and add a random error vector e of weight t
and length n. Send y = mG � + e.

• Decrypt: Compute yP−1 = mG �P−1 + eP−1 = (mS)G + eP−1.
This works because eP−1 has the same weight as e

Tanja Lange Code-based cryptography I 10

The McEliece cryptosystem II

• Encrypt: Compute mG � and add a random error vector e of weight t
and length n. Send y = mG � + e.

• Decrypt: Compute yP−1 = mG �P−1 + eP−1 = (mS)G + eP−1.
This works because eP−1 has the same weight as e
because P is a permutation matrix.
Use fast decoding to find mS and m.

• Attacker is faced with decoding y to nearest code word mG � in the
code generated by G �.
This is general decoding if G � does not expose any structure.

Tanja Lange Code-based cryptography I 10

24

Hash-based cryptography

• Uses secure hash functions only

• Simple, conservative design

• Survives quantum attacks

• Proven: decades of research

Lamport OTS

• Generate 2 secrets per message bit

• Sign by revealing secrets

• Verify: hash revealed secrets match public key

• Use once only!

25

Hash-based cryptography

Many-Time: Merkle Tree

• Combine many OTS keys

• Build Merkle tree → Root = master public key

• Sign: OTS + Merkle proof

• Verify: OTS signature + proof to root

Real-World Use: XMSS

• XMSS = eXtended Merkle Signature Scheme (RFC 8391)

• Used for secure IoT firmware updates

• Small public key, huge number of signatures

• Very strong quantum resistance

26

Quantum Random Oracle Model

In classical cryptography, a Random Oracle is an idealized hash function:

○ It’s a theoretical black box that responds to every unique query with a truly random output.

○ If you query it with the same input again, it gives the same output.

○ No algorithm can predict the output except by asking the oracle.

In practice, cryptographic hash functions (like SHA-256) are often modeled as random oracles in security proofs
to simplify analysis.

What is a Random Oracle?

27

Quantum Random Oracle Model

In the Quantum Random Oracle Model, the adversary is assumed to have quantum capabilities. That means:

● The adversary can make quantum queries to the random oracle.

● They can query in superposition: instead of asking the oracle for H(x) for a single x, they can prepare a
quantum state that’s a superposition of multiple inputs, and the oracle must respond coherently to that
entire state.

What is the Quantum Random Oracle Model (QROM)?

28

Quantum Random Oracle Model

Modern hash-based proofs rely heavily on the assumption that an attacker can only make classical queries.

However, if someone has a quantum computer:

● They can run Grover’s algorithm to get a quadratic speedup for finding pre-images.

● They can use quantum queries to break protocols that are secure in the classical random oracle model but
fail when queries are made in superposition.

QROM is a stronger, more realistic model for analyzing post-quantum cryptography.

Why is QROM needed?

29

Quantum Random Oracle Model

Proving security in the QROM is trickier:

● The simulator must answer all possible quantum queries consistently — which is technically challenging.

● Classical “rewinding” techniques for proofs don’t work directly on quantum adversaries.

New proof techniques like measure-and-reprogram, semi-classical oracles, or special quantum rewinding tricks
are used instead.

What changes in proofs?

Conclusions & Future Research Challenges

● PQC algorithms generally require larger key sizes and more complex computations compared to traditional cryptographic methods.
This can lead to higher processing power and memory requirements, affecting performance, especially in resource-constrained environments
such as Internet of Things (IoT) devices and real-time systems.

● Many enterprises lack the necessary knowledge and expertise to implement PQC solutions effectively. The complexity of these new
cryptographic methods requires security professionals to obtain specialized training and increase their ability to adapt.

● Unlike traditional encryption algorithms that have been standardized and widely adopted for decades, PQC is still evolving, and
many existing systems are not designed to handle post-quantum cryptographic primitives. Implementing PQC requires rewriting
cryptographic libraries, updating protocols, and ensuring backward compatibility, all of which introduce potential vulnerabilities
and security risk.

● Despite the threat of quantum computing quickly approaching, many organizations are occupied with other priorities, such as
adapting to AI and other new technologies, which inevitably will lead to limited engagement with quantum computing and its
security implications.

● While NIST has made significant progress, the landscape is still evolving. There is still a lack of comprehensive guidance and
uncertainty regarding the appropriate algorithms to choose.

30Ref: “Post-Quantum Cryptography: A Call to Action”, by Collin Beder, CSX-P, CET, Security+ (www.isaca.org)

References

1 Nayak, C.; “Microsoft Unveils Majorana 1, the World’s First Quantum Processor Powered by Topological Qubits,” Microsoft, 19 February 2025; Conover, E.; “The New

Light-Based Quantum Computer Jiuzhang has Achieved Quantum Supremacy,” Science News, 3 December 2020; Lee, J.; “IBM Launches its Most Powerful Quantum

Computer With 433 Qubits,” Reuters, 9 November 2022; Newman, M.; Satzinger, K.; et al.; “Making Quantum Error Correction Work,” Google Research, 9 December 2024

2 Keyfactor, “Harvest Now, Decrypt Later: A New Form of Attack,” 29 April 2024

3 ISACA® Pulse Poll on Quantum Computing, 2025

4 Bolgar, C.; “Microsoft’s Majorana 1 Chip Carves New Path for Quantum Computing,” Microsoft, 19 February 2025

5 Farlini, E.; “Scientists Question Microsoft's Quantum Computing 'Breakthrough,'” PC Mag, 10 March 2025

6 National Institute of Standards and Technology (NIST), NIST Internal Report NIST IR 8545 Status Report on the Fourth Round of the NIST Post-Quantum Cryptography

Standardization Process, USA, March 2025

7 Wickramasinghe, S.; “RSA Algorithm in Cryptography: Rivest Shamir Adleman Explained,” Splunk Blogs, 26 November 2024

8 GeeksforGeeks, “Digital Signature Algorithm (DSA),” 13 February 2025

9 GeeksforGeeks, “Blockchain – Elliptic Curve Digital Signature Algorithm (ECDSA),” 29 November 2022

10 Gillis, A.; “Diffie-Hellman Key Exchange (Exponential Key Exchange),” TechTarget

11 Relyea, R.; “Post-Quantum Cryptography: Lattice-Based Cryptography,” Red Hat Blog, 30 October 2023

12 Relyea; “Post-Quantum Cryptography: Lattice-Based Cryptography”

13 NIST, “FIPS 203 Module-Lattice-Based Key-Encapsulation Mechanism Standard,” 13 August 2024

14 Cryptographic Suite for Algebraic Lattices, “CRYSTALS”

15 NIST, “FIPS 204 Module-Lattice-Based Digital Signature Standard,” 13 August 2024

16 Cryptographic Suite for Algebraic Lattices, “CRYSTALS”

17 Relyea, R.; “Post-Quantum Cryptography: Hash-Based Signatures,” 27 October 2022

18 NIST, “FIPS 205 Stateless Hash-Based Digital Signature Standard,” 13 August 2024

19 Yevchenko, A.; “What Exactly is Grover’s Algorithm?,” Medium, 9 December 2021

20 NIST, “FIPS 205 Stateless Hash-Based Digital Signature Standard”

21 NIST, “FIPS 205 Stateless Hash-Based Digital Signature Standard”

22 Stateless Hash-based Signatures, “SPHINCS+”

23 Anglen, J.; “Future-Proofing Blockchain: Embracing Quantum-Resistant Cybersecurity in 2024,” Rapid Innovation

24 Anglen; “Future-Proofing Blockchain: Embracing Quantum-Resistant Cybersecurity in 2024”

25 Anglen; “Future-Proofing Blockchain: Embracing Quantum-Resistant Cybersecurity in 2024”

31

25 Anglen; “Future-Proofing Blockchain: Embracing Quantum-Resistant Cybersecurity in 2024”

26 Anglen; “Future-Proofing Blockchain: Embracing Quantum-Resistant Cybersecurity in 2024”

27 Gaborit, P.; Deneuville, J.C.; Hamming Quasi-Cyclic (HQC), 19 February 2025

28 Boutin, C.; “NIST Selects HQC as Fifth Algorithm for Post-Quantum Encryption,” NIST News, 11 March 2025

29 Lokhande, B.; “Post-Quantum Cryptography for Internet and WebPKI: Where are We Now and How Do You Prepare?,” Redshift Blog, 20 February 2025

30 Ivezic, M.; “Post-Quantum Cryptography PQC Challenges,” Post Quantum, 1 June 2023

31 IDEMIA, “Key Obstacles to Post-Quantum Cryptography (PQC) Adoption,” 26 February 2025

32 Celi, S.; Sullivan, N.; “The Post-Quantum Future: Challenges and Opportunities,” The Cloudfare Blog, 25 February 2025

33 Bos, J.; Cloostermans, C.; et al.; Post-Quantum Cryptographic Migration Challenges for Embedded Devices, NXP

34 Bousquette, I.; “Quantum Computing Is Closer Than Ever. Everybody’s Too Busy to Pay Attention,” The Wall Street Journal, 13 February 2025

35 NIST, “Post-Quantum Cryptography (PQC)” 27 March 2025

36 CISA, “CISA, NSA and NIST Publish New Resource for Migrating to Post-Quantum Cryptography,” CISA, 21 August 2023

37 QED-C, “The Quantum Consortium” 2025

38 Harishankar, R.; Osborne, M.; et al.; “Crypto-Agility and Quantum-Safe Readiness,” IBM, 19 June 2024

https://www.microsoft.com/en-us/research/project/post-quantum-cryptography/

https://openquantumsafe.org/

https://github.com/open-quantum-safe/liboqs

https://www.redhat.com/en/blog/post-quantum-cryptography-lattice-based-cryptography

32

References

THANK YOU

33

