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1 States and Transformations in Quantum Mechanics

1. |ψ⟩: Quantum state as an example of a state.
Other classical examples: (x, p), (P, V ), etc.

In physics, a state refers to a complete specification of a system at a given moment
of time. This specification should contain enough information to determine how the
system will evolve (in principle), according to the governing physical laws.
For example, in classical physics, states are described using measurable quantities such
as:

• Classical mechanics: The state of a particle is described by its position and
momentum (x, p).

• Thermodynamics: A macroscopic system such as an ideal gas can be described
by variables like pressure and volume (P, V ).

2. Transformations are dynamics, dictated by linearity and symmetry.

3. Why linear? Stern–Gerlach, Young’s Double-Slit Experiment, etc.
Note:Not all linear theories are quantum mechanical.

4.

|ψ⟩ → |ϕ⟩ ⇒ |ϕ⟩ = U |ψ⟩ From linearity (1)

5. Inner product preservation:

⟨ψ|ψ⟩ = ⟨ϕ|ϕ⟩ (2)

This conditions stems from probability conservation (like in chemical reactions, mass
is preserved). Equation (1) implies,

U †U = UU † = 1 (3)
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6. In algebra, U is called a unitary operator.
Lie group: U(N) — the unitary group.

7. In quantum computing: U represents all state transformations.
U is composed of “primitive unitaries” called gates.

8. Properties of Unitary Operators:

(a) U †U = 1.

(b) U = exp[anti-Hermitian matrix].

(c) Anti-Hermitian = iH, where H† = H (i.e., H is Hermitian: Hamiltonian).

(d) H has real eigenvalues and orthonormalizable eigenvectors.

(e) Time evolution:

U = exp

(
−iHt

ℏ

)
(compact Lie groups) (4)

Do a Taylor series expansion.

(f) Note: For H = ωn̂+gx̂, where n̂ and x̂ are number operator and position operator
respectively, the group is non-compact.

(g) Products of unitaries is unitary:

U1 · U2 · U3 · · · · · Un ∈ U(N) if Ui ∈ U(N) (5)

(h) Sum of Hermitian operators is Hermitian.
This is helpful since if H =

∑
i hi, h

†
i = hi, then,

U = eiH ∈ U(N) (6)

(i) Unitary operators don’t commute!

U1U2 ̸= U2U1 (7)

Proof: Let

U1 = e−iθH1 , U2 = e−iθH2 (8)

For small θ, do a Taylor series expansion and convince yourself that the two
expressions are non-identical.

9. Baker–Campbell–Hausdorff Lemma.
BCH asserts that,

U = e−iθABeiθA = B − iθ[A,B] +
θ2

2!
[A, [A,B]] + . . . (9)

See Zassenhaus Formula.
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10. As an application of the previous point, consider Unitary frame (rotating frame,
etc.)
Consider the time-dependent Schrödinger equation (TDSE),

iℏ
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ (10)

Task: I want to write an equation for |φ(t)⟩ = U(t) |ψ(t)⟩
Ans: Let,

|φ(t)⟩ = U(t) |ψ(t)⟩ (11)

Differentiating the transformed state:

∂t |φ(t)⟩ = (∂tU(t)) |ψ(t)⟩+ U(t)∂t |ψ(t)⟩

= U̇ |ψ(t)⟩ − i

ℏ
U(t)H(t) |ψ(t)⟩

= U̇ U †U︸︷︷︸
1

|φ(t)⟩ − i

ℏ
U(t)H(t)U †(t)U(t)︸ ︷︷ ︸

1

|φ(t)⟩

=

(
U̇U † − i

ℏ
UHU †

)
|φ(t)⟩

So,

iℏ
d

dt
|φ(t)⟩ = iℏ

(
U̇U † − i

ℏ
UHU †

)
|φ(t)⟩ =

(
iℏU̇U † + UHU †

)
|φ(t)⟩ (12)

Define the new Hamiltonian in the rotating frame as,

X(t) = UHU † + iℏU̇U † (13)

The first term in the RHS of equation (13) is usually of the form e−iθAHeiθA .

11. Counting principles and unitary operators.

Let U ∈ U(N).
Qn 1: How many “free elements” are in U?

Counting degrees of freedom for 2× 2 unitary matrices:

Let

U =

(
a b
c d

)
(14)

Since a, b, c, d are complex, we have 4× 2 = 8 real parameters.
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Imposing unitarity: U †U = 1:

U † =

(
a∗ c∗

b∗ d∗

)
, U †U =

(
|a|2 + |c|2 a∗b+ c∗d
ab∗ + cd∗ |b|2 + |d|2

)
=

(
1 0
0 1

)
(15)

This gives 4 constraints,

|a|2 + |c|2 = 1

|b|2 + |d|2 = 1

Re(ac∗ + bd∗) = 0

Im(ac∗ + bd∗) = 0

So, total free parameters = 8− 4 = 4 real parameters.

Also, for SU(2) (special unitary group), we impose:

detU = ad− bc = +1 (16)

which imposes 1 more constraint, leaving us with 3 real parameters.

Thus, a general 2× 2 unitary matrix can be expressed as a linear combination of Pauli
matrices,

U = a 1 + b σx︸︷︷︸
σ1

+c σy︸︷︷︸
σ2

+d σz︸︷︷︸
σ3

(17)

where,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(18)

These are Hermitian and unitary (up to phases), and they form a basis for 2 × 2
matrices.

From U †U = 1, we get,

a2 + b2 + c2 + d2 = 1 (19)

This gives 3 independent real parameters if a, b, c, d ∈ R1.

In general, any Hermitian operator U can be expanded as:

U =
∑
i

uiÔi where Ôi = Ô†
i (20)

with Ôi forming a basis of Hermitian operators:

• Real symmetric part:
N(N + 1)

2
operators
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• Real antisymmetric × i:
N(N − 1)

2
operators

Total = N2 operators. The expansion in equation (20) is known as the Fano repre-
sentation.

12. Bloch sphere representation

Let

U =

(
cos θ sin θ eiϕ

sin θ e−iϕ − cos θ

)
(21)

Check unitarity:

U †U =

(
c s+
s− −c

)(
c s+
s− −c

)
=

(
c2 + s+s− cs+ − s+c
cs− − cs− s−s+ + c2

)
(22)

(where c = cos θ, s± = sin θe±iϕ)

Also, a general qubit state on the Bloch sphere,

U |0⟩ =
(
s+
−c

)
= −[cθ |0⟩ − eiϕsθ |1⟩] (23)

Note: The Bloch sphere geometrically represents pure qubit states as points on the
unit 2-sphere.

Figure 1: Bloch sphere
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13. Unitary Composed from Hamiltonians

Same question as “restricted unitaries”.

Consider the Hamiltonian,

H = ωσz (24)

Question: Does this generate all unitaries on the Bloch sphere?

Answer: No!
Because eiθσz only generates a U(1) subgroup of SU(2)!

Takeaway: You cannot generate all unitaries if your Hamiltonian only spans a sub-
group of SU(2).

Real takeaway: We need the notion of subgroups.

14. Bipartite unitaries: Tensor products

To write unitaries for two-qubit systems, you must work with tensor products.

Tensor product: If A is an m × n matrix and B is a p × q matrix, the tensor
(Kronecker) product A⊗B is an mp× nq matrix defined as,

A⊗B ≡


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

. . .
...

Am1B Am2B · · · AmnB

 . (25)

Linearity and tensor product structure: Linearity and the presence of more than
one system (e.g., qubits or subsystems or atom) demand tensor product structure.
The reason is that you can always ignore one subsystemn (atom),

⟨ψA| ⊗ ⟨ψB| (XA ⊗ 1B) |ψA⟩ ⊗ |ψB⟩ = ⟨ψA|XA |ψA⟩︸ ︷︷ ︸
Measured on A

· ⟨ψB|ψB⟩︸ ︷︷ ︸
Did nothing on B

(26)

Decomposition of Unitaries on Bipartite Systems:

You can check that any unitary U acting on bipartite systems (A and B) can be
expanded as:

U = U0 1A ⊗ 1B + a⃗ · O⃗A ⊗ 1B + 1A ⊗ b⃗ · O⃗B +

dA∑
i=1

dB∑
j=1

Tij Ô
A
i ⊗ ÔB

j (27)

Here:

• O⃗A = (σx, σy, σz) for qubits
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• O⃗B can be generalized (e.g., Gell-Mann matrices for qutrits)

Generalization to multipartite systems:

ÔA
i ⊗ ÔB

j ⊗ ÔC
k ⊗ · · · (28)

Example:

O⃗A = (σx, σy, σz), O⃗B = Gell-Mann matrices (8 operators) (29)

15. Gate Composition of Unitary Operators

(a) In quantum computing (QC), we want the initial state to hold some “data” |ψ0⟩.
(b) We want to “compute” it by unitary U |ψ0⟩, and reading some answer from it.

(c) Why do we want to do this?

Answer: Computational Complexity Hierarchy.

Motivation includes:

• Understanding which problems are in P, NP, BQP, etc.

• Prime factorization is in BQP (known example of quantum advantage).

• Connections to “Extended Church-Turing Hypothesis.”

Figure 2: Complexity classes

(d) The unitary U is an arbitrary element of SU(2n).

We already know that we should not get stuck in subgroups!

(e) But from the viewpoint of CS engineers, the Hamiltonian models are not stan-
dardized. They want “standard gates” that you can apply to get anything.

(f) In classical electronics, the example is NAND and XOR gates.

→ In physics, we would answer the question of universality as:

“Arbitrary single-qubit rotations” + “One two-qubit gate”.

→ In quantum computing, the answer is more subtle.
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Hadamard Gate (H)

H =
1√
2

[
1 1
1 −1

]
|[innersep = 4pt,minimumwidth = 1.5pt,minimumheight = 1.5pt]|

Pauli-X Gate (X)

X =

[
0 1
1 0

]
|[innersep = 4pt,minimumwidth = 1.5pt,minimumheight = 1.5pt]|

Pauli-Y Gate (Y )

Y =

[
0 −i
i 0

]
|[innersep = 4pt,minimumwidth = 1.5pt,minimumheight = 1.5pt]|

Pauli-Z Gate (Z)

Z =

[
1 0
0 −1

]
|[innersep = 4pt,minimumwidth = 1.5pt,minimumheight = 1.5pt]|

Phase Gate (S)

S =

[
1 0
0 i

]
|[innersep = 4pt,minimumwidth = 1.5pt,minimumheight = 1.5pt]|

π/8 Gate (T )

T =

[
1 0
0 eiπ/4

]
|[innersep = 4pt,minimumwidth = 1.5pt,minimumheight = 1.5pt]|

A universal gate set is given by,

{H,S,CNOT}+ T (Other choices exist!) (30)
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(e) (H, S, T, CNOT) in detail:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

(
1 0
0 σx

)
(31)

H |0⟩ = 1√
2
(|0⟩+ |1⟩)

H |1⟩ = 1√
2
(|0⟩ − |1⟩)

This is a crucial step in an interferometer.

S2 =

(
1 0
0 i

)(
1 0
0 i

)
=

(
1 0
0 −1

)
= Z

HZH = X and so forth. (32)

Comments:

1. H, S, CNOT generate the Pauli group:

P = {±1,±i} × {X, Y, Z} (33)

2. The Clifford group C normalizes P :

(U ∈ C) ⇒ ∀Pi ∈ P , UPiU
† ∈ P (34)

3. Clifford circuits generate volume law entanglement.

4. Clifford circuits are easy to “track” ⇒ Stabilizer eigenvalues.

5. Adding T gates makes circuits classically difficult to simulate.

6. Good reference: Daniel Gottesman’s book “How to Survive the Classical World as a
Quantum Computer”.

Available online and free.
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2 Lecture II: Open Quantum Systems

1.

q̈ + γq̇ + ω2
0q = 0 (35)

where γ is a phenomenological damping parameter.

2. Same with QM, but a bit subtle.

q̇ = p

ṗ = −γp− ω2
0q (36)

Let’s look at the commutation relation.

[q, p] = iℏ ⇒ d

dt
[q, p] = −γ[q, p]

⇒ [q(t), p(t)] = e−γt[q(0), p(0)] = e−γtiℏ

⇒ “Decays” canonical commutation relation, which is clearly a nonsense.

3. System-Environment Approach

E

S

|ψSE⟩ =
∑
i,j

Cij |i⟩ ⊗ |j⟩

C = UiαλααVαj , λ ≥ 0 (Singular Value Decomposition)

|ψSE⟩ =
∑
α

λα |uα⟩ ⊗ |vα⟩ (Schmidt coeffs.)

Entanglement exists if #{λα} > 1, i.e., there is more than one non-zero Schmidt
coefficient.

⟨AS⟩ =
∑
α,β

λαλβ⟨uα|A|uβ⟩⟨vα|vβ⟩

=
∑
α

λ2α⟨uα|A|uα⟩

= Tr(Aρ) (where ρ =
∑
α

λ2α|uα⟩⟨uα|) (37)

Conjecture: Elevate ρ̂ to a fundamental object.

4. How does ρ̂ transform?
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2.1 Kraus Operators and Stinespring Dilation from the System-
Environment Approach

Consider a bipartite pure state of a system S and its environment E,

|ψSE⟩ =
∑
α

λα |uα⟩ ⊗ |vα⟩ , (38)

where {λα} are the non-negative Schmidt coefficients, and |uα⟩ and |vα⟩ are orthonormal
bases for HS and HE respectively. We assume that |ψSE⟩ arises from a combined unitary
evolution USE acting on a system-environment product state,

|ψSE⟩ = USE(|ψ⟩S ⊗ |e0⟩E), (39)

where |ψ⟩S is an arbitrary pure state of the system and |e0⟩E is a fixed pure state of the
environment.

Tracing over the environment yields the reduced density matrix of the system,

ρS = TrE [|ψSE⟩⟨ψSE|] =
∑
α

λ2α |uα⟩⟨uα| . (40)

Entanglement exists if and only if more than one λα is non-zero.
Let us now describe how the system evolves when the environment is not observed. To

do this, consider an orthonormal basis |ek⟩ for the environment’s Hilbert space HE. We
define a set of operators {Kk}—called Kraus operators—that act only on the system, by
projecting the joint unitary USE onto the environment basis state |ek⟩,

Kk := ⟨ek|USE|e0⟩ . (41)

Intuitively, Kk tells us how the system evolves when the environment is found in the state
|ek⟩ after interacting with it initially in state |e0⟩.

Using these operators, we can write the reduced evolution of the system (i.e., after tracing
out the environment) as,

E(ρS) =
∑
k

KkρSK
†
k. (42)

This is the operator-sum representation or Kraus representation of the quantum
channel E . It describes a completely general evolution of a quantum system interacting
unitarily with an environment that is initially uncorrelated with the system.

2.2 Stinespring Dilation

The Kraus representation of a quantum channel may seem abstract at first, but it has a deep
and physically meaningful origin. This is formalized by the Stinespring dilation theorem,
which provides a structural explanation for all completely positive, trace-preserving (CPTP)
maps.

Theorem 1 (Stinespring Dilation). Let E : B(HS) → B(HS) be a quantum channel. Then
there exists:
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• an auxiliary Hilbert space HE (the environment),

• a pure state |e0⟩ ∈ HE,

• and a unitary operator USE on HS ⊗HE,

such that for any input state ρS of the system, the action of E can be written as

E(ρS) = TrE

[
USE (ρS ⊗ |e0⟩⟨e0|)U †

SE

]
. (43)

This result tells us something remarkable: any quantum process—no matter how noisy or
irreversible it seems—can always be seen as part of a larger, reversible unitary evolution,
provided we allow the system to interact with an extended environment.

To see how this connects to the Kraus representation, suppose {|ek⟩} is an orthonormal
basis of HE. Then the partial trace over the environment can be evaluated as

E(ρS) =
∑
k

⟨ek|USE (ρS ⊗ |e0⟩⟨e0|)U †
SE |ek⟩

=
∑
k

( ⟨ek|USE|e0⟩) ρS ( ⟨ek|USE|e0⟩)† . (44)

We define the Kraus operators Kk acting on HS by

Kk := ⟨ek|USE|e0⟩ , (45)

so that the channel takes the familiar form:

E(ρS) =
∑
k

KkρSK
†
k. (46)

In summary, Stinespring dilation tells us that every quantum channel is physically re-
alizable as a unitary evolution on a larger system. The Kraus operators arise directly by
projecting the unitary USE onto the initial and final states of the environment. This provides
an operational understanding of quantum dynamics.
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