## Quantum Operators & Gates

Sooryansh Asthana & Sai Vinjanampathy Department of Physics, IIT Bombay

| Concept            | Properties / Definitions                                            | Examples / Representations                                                                                                                                                      |  |
|--------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Hermitian Op-      | $H^{\dagger}=H.$ It has real eigenvalues. Examples                  | $\sigma_x, \sigma_z, H = \frac{p^2}{2m} + V(x)$                                                                                                                                 |  |
| erator             | include observables like energy.                                    |                                                                                                                                                                                 |  |
| Anti-              | $A^{\dagger} = -A$ . It has imaginary eigenvalues. $e^A$ is         | A = iH where H is Hermitian                                                                                                                                                     |  |
| Hermitian          | unitary.                                                            |                                                                                                                                                                                 |  |
| Unitary Opera-     | $U^{\dagger}U = I$ . It preserves norm. Reversible.                 | $e^{-iHt}$ , CNOT, rotation gates                                                                                                                                               |  |
| tor                |                                                                     |                                                                                                                                                                                 |  |
| Euler Decom-       | Any 1-qubit unitary can we written as:                              | Used in Qiskit/IBM Q                                                                                                                                                            |  |
| position           | $U = R_z(\phi)R_y(\theta)R_z(\lambda)$                              | ·                                                                                                                                                                               |  |
|                    | $U(N): N^2$ real parameters                                         | SU(2): 3  real parameters                                                                                                                                                       |  |
| Parameters         | $SU(N): N^2-1$ real parameters                                      |                                                                                                                                                                                 |  |
|                    | Hermitian: $N^2$ real parameters                                    | Hermitian $2 \times 2$ : 4 real parameters                                                                                                                                      |  |
| Orthogonal         | $O^T O = I$ . Real unitaries.                                       | $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$                                                                             |  |
| Matrix             | Rotations/reflections.                                              |                                                                                                                                                                                 |  |
| Generators         | $U = e^{iH}$ where H is Hermitian generator                         | $H = \sigma_x \Rightarrow U = e^{-iHt}$                                                                                                                                         |  |
| Pauli Matrices     | Basis of $SU(2)$ . Hermitian $+$ unitary.                           | $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},  \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},  \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ |  |
| Clifford Group     | Maps Paulis to Paulis. Efficient for error correction.              | H, S, CNOT; not universal alone                                                                                                                                                 |  |
| Gate Decomposition | Any unitary $\approx$ finite universal gate set                     | H, T, CNOT, Solovay-Kitaev theorem                                                                                                                                              |  |
| Universality       | Gate set can approximate any $U \in SU(2^n)$                        | Clifford + T, or {H, T, CNOT}                                                                                                                                                   |  |
| $SU(2^n)$ Coverage | Cliffords $\subset$ dense subset of $SU(2^n)$ . Need non-Cliffords. | T gate, Toffoli, arbitrary rotations                                                                                                                                            |  |

## **Practice Questions**

- 1. Evaluate the expectation value of  $\sigma_x, \sigma_y, \sigma_z$  in the state 15. Prove  $U^{\dagger}U = I$  for  $U = e^{-iHt}$  $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle.$
- 2. Is  $\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$  unitary?
- 3. Diagonalize  $\sigma_x$ , and find its eigenvalues.
- 4. Count independent real parameters in SU(3).
- 5. Is  $e^{i\sigma_y}$  unitary? Is it hermitian?
- 6. What are the allowed eigenvalues of operators which are 21. Simplify  $e^{-i\pi\sigma_x/4}$ . both hermitian and unitary. Give some examples.
- 7. Write the matrix representation of H gate in  $\{|+\rangle, |-\rangle\}$ basis and verify its unitarity.
- 8. Find Euler angles for  $R_y(\theta)$ .
- 9. Simplify  $e^{-i\pi\sigma_x/2}$ .
- 10. Is the matrix  $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$  Hermitian?
- 11. Give example of a non-unitary matrix?
- 12. Prove that A = iH is anti-Hermitian if H is hermitian.
- 13. Can a real matrix be unitary?
- 14. Give example of a  $2 \times 2$  orthogonal matrix.

- 16. What is global phase in  $e^{i\theta}I$ ?
- 17. Prove  $R_z(\phi)$  is unitary
- 18. Count independent real parameters in  $4 \times 4$  Hermitian
- 19. Which gate completes Clifford for universality?
- 20. Why is T gate needed?
- 22. Diagonalize  $\sigma_x + \sigma_y$
- 23. Why does SU(2) exclude global phase?
- 24. Show that an arbitrary single-qubit unitary can be written in the form

$$\mathcal{U} = e^{i\alpha} R_{\hat{n}}(\theta),$$

 $R_{\hat{n}}(\theta) = e^{-i(\theta/2)\hat{n}.\vec{\sigma}} = \cos(\theta/2)\mathbb{I} - i\sin(\theta/2)(\hat{n}_x\sigma_x + \hat{n}_y\sigma_y + i\sin(\theta/2)\hat{n}_x\sigma_x + i\sin(\theta/$  $\hat{n}_z \sigma_z$ ).

25. Show that any arbitrary single qubit unitary can be expressed using rotations in the z and y axes and a phase shift in the form

$$\mathcal{U} = e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta).$$

## Kraus Operators, Partial Trace, and Entanglement

| Topic                      | Definition and Explanation                                                                                                                                                                                                                                                                                                                             | Exercises and Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mixed States               | Quantum states are described by density matrices $\rho$ . A state is <b>mixed</b> if it cannot be written as a pure state $ \psi\rangle\langle\psi $ .                                                                                                                                                                                                 | Ex: $\rho = \frac{1}{2}  0\rangle \langle 0  + \frac{1}{2}  1\rangle \langle 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Purity                     | A measure of how mixed a state is: $\text{Tr}(\rho^2)$ .  • = 1: pure, < 1: mixed  • Maximally mixed: $\rho = \frac{\mathbb{I}}{d} \Rightarrow \text{Tr}(\rho^2) = \frac{1}{d}$                                                                                                                                                                        | Q: Show $Tr(\rho^2) = 1$ for pure states.<br>Q: Compute for $\rho = \frac{\mathbb{I}}{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Entanglement (Pure)        | A pure state is entangled if it cannot be written as $ \psi\rangle_{AB} =  \phi\rangle_A \otimes  \chi\rangle_B$ . Entangled pure states yield mixed reduced states.                                                                                                                                                                                   | Q: Is $ \psi\rangle = \frac{1}{\sqrt{2}}( 00\rangle +  11\rangle)$ entangled? Compute $\rho_A$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Entanglement (Mixed)       | Mixed states are entangled if not expressible as: $\rho_{AB} = \sum_{j} p_{j} \rho_{j}^{A} \otimes \rho_{j}^{B}$ .                                                                                                                                                                                                                                     | Q: Example of entangled mixed state? Q: If $\rho_A = \rho_B = \frac{\mathbb{I}}{2}$ , is it separable?                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Schmidt Decomposition (SD) | The SD of any pure bipartite state is given as: $ \psi\rangle = \sum_{i} \lambda_{i}  u_{i}\rangle_{A} \otimes  v_{i}\rangle_{B}$ , if $\{ u_{i}\rangle_{A}\}, \{ v_{i}\rangle_{B}\}$ form a locally orthonormal basis.  • $\lambda_{i} \geq 0, \sum \lambda_{i}^{2} = 1$ • Schmidt rank = #nonzero $\lambda_{i}$ • Rank 1 $\Leftrightarrow$ separable | $\begin{array}{l} Q: \text{ Schmidt decompose }  \psi\rangle = \\ \frac{1}{\sqrt{3}}( 00\rangle +  11\rangle +  22\rangle). \text{ Is it already} \\ \text{in Schmidt decomposed form?} \\ Q. \text{ Give a Schmidt decomposition of} \\ \text{the state } \frac{1}{2}( 00\rangle +  01\rangle +  10\rangle -  11\rangle). \\ \text{What is its Schmidt rank?} \\ Q. \text{ Give a Schmidt decomposition of} \\ \text{the state } \frac{1}{2}( 00\rangle +  01\rangle +  10\rangle +  11\rangle). \\ \text{What is its Schmidt rank?} \\ \end{array}$ |
| Partial Trace              | Traces out subsystem. From $\rho_{AB}$ , define: $\rho_A = \text{Tr}_B(\rho_{AB})$ . Models information loss.                                                                                                                                                                                                                                          | $\rho_A$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Kraus Operators            | CPTP maps describe quantum operations: $\rho' = \sum_k K_k \rho K_k^{\dagger}$ , $\sum K_k^{\dagger} K_k = \mathbb{I}$ . Models environment-induced evolution.                                                                                                                                                                                         | Q: Show $K_0 = \sqrt{p} \mathbb{I}$ , $K_1 = \sqrt{1-p} Z$ defines a CPTP map.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Stinespring Dilation       | Any channel = unitary on larger system + partial trace: $\rho' = \operatorname{Tr}_E \left[ U(\rho \otimes  0\rangle_E \langle 0 ) U^\dagger \right]$                                                                                                                                                                                                  | Q: Write Kraus ops for amplitude damping channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## Practice Questions

- 1. True/False: Every state can be expressed in the form 17. Show: for  $|\psi\rangle = \sum_i \lambda_i |i\rangle_A |i\rangle_B$ , Purity $(\rho_A) = \sum_i \lambda_i^4$ .
- 2. What is the purity of  $|+\rangle \langle +|, |+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ ?
- 3. Give examples of 2-qubit pure product states.
- 4. Is  $\rho = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1|$  pure or mixed?
- 5. Show the Kraus operators  $K_0 = \sqrt{p}\mathbb{I}$ ,  $K_1 = \sqrt{1-p}Z$ correspond to a CPTP map.
- 6. Find the purity of  $\rho = \frac{1}{2}$ .
- 7. For  $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ , compute  $\rho_A$ .
- 8. Find the Schmidt rank of  $|\psi\rangle=\frac{1}{\sqrt{3}}(|00\rangle+|11\rangle+|22\rangle).$
- 9. Why is reduced state of entangled pure state mixed?
- 10. Prove  $Tr(\rho^2) = 1$  for pure  $\rho$ .
- 11. If the Schmidt rank of a state is 1, is it separable or entangled?
- 12. If the reduced density matrices of a bipartite state  $\rho_{AB}$ are  $\rho_A = \rho_B = \frac{1}{2}$ , is the bipartite state  $\rho_{AB}$  separable or entangled?
- 13. What does partial trace mean physically?
- 14. Stinespring dilation for:  $\rho \mapsto (1-p)\rho + pZ\rho Z$
- 15. Prove: Entropy of pure bipartite separable state = entropy of reduced state. Does it hold for bipartite entangled states too?
- 16. Is  $\rho = \frac{1}{3} |\phi^+\rangle \langle \phi^+| + \frac{2}{3} \frac{\mathbb{I}_4}{4}$  entangled?

- 18. Find the Kraus operators for the following CPTP maps (system and environment are highlighted):
  - (a) Bit-flip channel ( $\tilde{p} = 1 p$ ):



(b) Phase flip channel



(c) Depolarising channel

