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Applications of anomalous Hall effect

AHE depend on the electronic and magnetic structure of material has become a useful experimental tool for solid state

physicist . For e.g. study of extremely thin magnetic layers and to observe the propagation of conduction electrons in a
metal.

The ability of the anomalous Hall effect to trace the magnetic impurities in metal can.

We could study the spin-dependent properties e.g. spin-orbit coupling with the help of AHE.

Samsung Galaxy S4 s-view cover (Sensor) Non-volatile memory device

High sensitivity (s = 2—2 = @, x=magnetic susceptibility, t=thickness of the sample ) far beyond the semiconductor
typically 1000 ohm/T.

Widely used in sensors and memory devices due to their linear field response, thermal stability, high-frequency
operation (can operate at GHz frequency), sub-micron dimensions of samples etc.

Rev. Mod. Phys. 82, 1539 (2010), J. Appl. Phys. 122, 033901 (2017)



Nobel Prize in the area of Hall Effect

Nobel Prize in Physics (1985)
For the discovery of integer quantum Hall effect

Nobel Prize in Physics (1998)
Discovery of new form of quantum fluid with
fractionally charged excitations
(Associated with Fractional quantum Hall effect)

Photo from the Nobel Photo from the Nobel Photo from the Nobel
Foundation archive. Foundation archive. Foundation archive.

Robert B. Laughlin Horst L. Stérmer Daniel C. Tsui
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Electrical transport

When an electric current flows through
a conductor a longitudinal voltage

develops across the conductor. R = Resistance of the conductor

Follow ohms law
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George Ohm

What will happen if we place the current
carrying conductor in external magnetic field
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s Hall effect
/ H1
=+ 4+ + o+
\ - - - / V= Hall voltage

—_ |
Vo =
» V «

Appearance of transverse voltage and
hence resistivity in current carrying
conductor placed in orthogonal magnetic

Pu ‘ field

1889

v

py = RoyH —

Hall coefficient

R, = l/ne

‘n’ is the carrier concentration (Revolutionized the semiconductor physics & industry)
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Anomalous Hall effect (AHE)

. M
In ferromagnets the Hall resistivity enhances A A A 4
many times in comparison to the normal metal + ok F ][+ 4
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pu = RoyH @

Anomalous Hall resistivity

Anomalous Hall effect
- + £
Pa —Po ™ Paun £
c
o
)
AHE somehow looks related to the magnetization,
fairly indicates that the AHE is spin dependent Magnetic field (B) H
phenomenon. A typical curve of A typical M-H curve
Hall resistivity in For ferromagnets

Beyond the Lorentz force .....[sromagnets



Origin of the anomalous Hall effect

Controversial over a long decades

Several experimental studies have done
to understand the origin of anomalous Hall

Theories of J. Smit, R. karplus and J .M. luttinger successfully explain the origin of AHE
Pu =Po T Pan

P = A Pue T DD

SkeW S(.;atterlng Intrinsic mechanism + Side jump (extrinsic)
(extrinsic)

R. Karplus et.al Phys. Rev. 95, 1154 (1954)
J.M. luttinger Phys. Rev. 112, 739 (1958)
J. Smit Phys. Rev. 92, 1576 (1953)

Rev. Mod. Phys. 82, 1539 (2010)
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Intrinsic (Quantum) Origin of anomalous Hall effect

Intrinsic mechanism: Purely arises from the band structure of the material

(AHC)

e’ &k
Ogp = _E Zﬂ:f {Eﬂ'}j Qﬂﬁ(“")ﬁr(k;l:

Berry curvature '(R) = Vg X Aq(R).

Phase picked by the wave function in an infinite small loop around the (k,,K,) point of an
energy band in reciprocal space

Equivalent to the magnetic field in k space and result into the anomalous Hall
conductivity (AHC).

Rev. Mod. Phys. 82, 1959 (2010)
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Berry Phase: A Quantum Mechanical Phenomenon

Fails to explain anomalous Hall effect due to

Classical Boltzmann Transport ,
x @ quantum geometric phase (Berry phase).

Classical transport theory describes how electrons

move in a solid under external forces (like electric If a quantum mechanical system is perturbed by a weak
or magnetic fields) without quantum effects like perturbation, then after a time t’ (say), the system does not
spin, Berry phase, or wave interference. find a new quantum state but return to its original state with a
hase factor.
r velocity of electron: P
Group velocity of electro aiart =
d(r) 10F classical example is the parallel transport ~——,

? = 7—1 @ : of a vector around a path on a curved surface

Force on electron in the presence of both E

and F: Ik Ynlt) = de - A,(R),

hE:—e(E—I—VXB)

@" V Rev. Mod. Phys. 82, 1959 (2010) agge =5~

Berry Phase  Berry vector potential \z%

N y

Science 356, 845-849 (2017)

explains ordinary Hall effect Quantum corrections: Including Quantum Berry phase

as Lorentz force: Berry curvature

—
Modified group velocity: @

F=—-e(E+vxB) d(r) L OE
In Steady state, electric force balances the dt = Ok +

magnetic farra-

—eEg. = —e(v x B)
The curvature of Berry phase is equivalent to the
= Egan1 = v X B magnetic field in k space and result into the additional

contribution to the anomalous velocity of electrons. ,,

e Classical transport also uses momentum space — but considers only energy not wavefunctions.
* Berry phase comes from wavefunction geometry- not energy but how the state itself evolves as k changes.



Sources of Berry curvature

Nodal line
Topological non-trivial
characteristics

Weyl Points

Co,MnGa
AHE and

ANE due to

Berry
curvature

Mn;Si,Te,

Therefore, tuning of Fermi level close to these topological non-trivial characteristics can significantly
enhance AHE and ANE
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Heusler alloys

ZnS

Heusler compound is an inter-metallic
alloy based on a Heusler phase

Friedrich Heusler: Cu,MnAl (1903)

16

Heusler XYZ
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https://en.wikipedia.org/wiki/Friedrich_Heusler

Why Heusler alloys ??

Co2 based alloys

Tetragonal
Heusler fomimagnate
alloys

perpendicular
magnetic
anisotropy

GMR &

Ni-Mn based allovs
spin- (Martensite m

magneto-
calorics

half-metallic
ferromagnets

o
St Heusler heavy
torque compounds
spin \K/JB(E tB|
injection systems
spin super-
sz:fz?:‘t:k conductors
semicon- thermo- P d 2 R E S n
topological 4
. insulators
LiZnAS ZrNiSn

Most recently: Quantum effect (Weyl, Anomalous Hall, Skyrmion)

EXCITING



> Large spin polarization
Co- based Heusler alloy —> > High curie temperature
“ - » Large intrinsic AHC

» Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys

Physical Rev. Letters 117, 236401 (2016).
» Anomalous Hall effect and the role of Berry curvature.....Phys. Rev. B 100, 054445 (2019)

> Discovery of topological Weyl fermion lines and.... Science-2019 DOI:
10.1126/science.aav2327
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Science-2019 DOI- 10.1126/science.aav2327



Fundamental Physics and Materials Engineering

» Theory suggest possibility of the quantized AHC, that is, a
3D quantum AHE (QAHE).
» How can be reached to the 3D QAHE or giant AHE?
» What is the recipe to find such materials?
QHE QAHE

¥
1

S

b — o (h/e)
I — p. lorb.umit)

— Py (hfe?)

A
— P [arb.unit])
A 1

1z =

J.'lh 1

maghn. field magn. field

Answers to these questions are not only
of fundamental importance, but also
likely leads to technological

applications. o




Co based Heusler : A promising class for anomalous

transport
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Glant room temperature anomalous Hall effect and
tunable topology in a ferromagnetic topological
semimetal CoMnAl

Peigang Li'®, Jahyun Koo®®, Wei Ning®™, Jinguo Li%, Leixin Miao®, Lujin Mir®®, Yanglin Zhu'3, Yu Wang'=,
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All  previous studies
disorder B2 phase.

This study ordered L2.
phase

Very large AHC, up to
1300 Q-'cm'at room
temperature.

Atomic ordering
effect

Nat Commun 11, 3476 (2020)



Atomic ordering & AHC in Co,-based Heusler alloys

Co,YZ :  All atoms at their own positions: L2, ordered

Mixing of Y and Z atoms. B2 disorder
Mixing of Co and Z atoms: DO; disorder
Mixing of all atoms: A2 disorder

Disorder: A common phenomenon in the Co,-based Heusler alloys

Exp.: Co,FeSi1, Co,FeAl, Co,MnAl (thin 30 m b)
film) etc. show the different types of ® Co '/.’.
disorder @ @y
@
®z
*  Co,MnGa 1300 S/cm ®
¢ Co,FeGe 78 S/cm ﬁ
Co,MnAl 1600 S/cm
*  Co,TiSn 100 S/cm L2, phase of Co,YZ
* Co,FeAl 39 S/cm
«  Co,FeSi 189 S/cm 2y / @ ) ‘,'"
* Co,FeGa 181 S/cm i‘/: ®
« CoMnSi 100 S/cm o ;/"
Co,MnSn 82 S/cm 2
+  Co,CrAl 438 S/cm " %s [ [P
* Co,VSn 1400 S/cm
« Co,VGa 66 S/cm DO, phase of Co,YZ A, phase of Co,YZ
Value of AHC in different Co ,-
based Heusler alloys PRB 91, 134409 (2015);Phys. Rev. B 85, 012405, Phys. Rev. B 83, 174410 (2011), Phys. Rev.

B 101, 134407 (2020); J. Magn. Magn. Mater. 448, 371 (2018)



Effect of disorder on AHC

* Recently Fe,-based Heusler alloys are reported to have lower AHC values with B2 type disorder in

comparison to ordered structure.

Adv, Sci. 8, 2100782 (2021)

@ » PP ovser 12 Exp. (at 2K) Cal.
Inverse Heusler()e() & & eusier (L2, o AS-QTOWH o SG216
"a&oﬂga *s°® ’0’0’ @ After annealing @ SG 225
@® @ —> Disorder (82) <¢——— d’oo"@&
0‘&02300 O L o e® Fe CoAl
i P - 2
SG 216 (F43m) e & SG 225 (Fm3m)
CS S
SG 221 (Pm3m) FezNiGa
® SG 216 (F43m) Fe,NiAl SG 225 (Fm3m) v - e
—F= + S +
Y /(\\\ : Fe_ NiAl
2 ST o
g J & i L o2 J |8 . . : . :
8\ N? -l ¢ 0 400 800 1200
o] (S ecm™)
4 . I
Is it always true ??? P
Co,FeAl, an ideal candidate to investigate (B2 is stable structure) ....
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Anomalous Hall effect in Co,FeAl Heusler compound:
Literature

» The stable structure of Co,FeAl is B2 type.
J. Magn. Magn. Mater. 442, 288 (2017)

» The AHC in Co,FeAl thin films shows controversial results in terms of origin and the magnitude

of AHC. [J. Magn.Magn. Mater.442, 288 (2017), J. Magn. Magn. Mater362, 52 (2014)]

» The Berry curvature calculation gives AHC ~ 39 S/cm.
PRB 91, 134409 (2015)

J. Magn.Magn. Mater.442, 288 (2017),

Experimental AHC ~ 100 S/cm J. Magn. Magn. Mater.362, 52 (2014)
PRB 91, 134409 (20135)

Theoretical AHC (ordered) ~39 S/cm

Origin of large Anomalous Hall???



Synthesizing the material

Arc Melting Technique

Vacuum sealing setup  Turbomolecular pump Arc furnace

o ()

e

Rotary pump Power supply Cu-hearth Tungsten tip

Synthesis of intermetallic systems under the argon atmosphere

Sealed quartz tube



Co,FeAl Heusler compound: Sample and Structure b

Gaurav Shukla

» Sample preparation: Arc Melting (High Vacuum)
*Structure: Synchrotron x-ray diffraction (DESY: GERMANY)

Capillary: Rotating: uniform
distribution of intensities
High flux: Low intensity peaks



Intensity (arb.units)

Co,FeAl Heusler compound: Crystal Structure

If consider completely ordered structure

E——
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)

L G571 B EE——
e 20% = g
+40% = L] [] L] L] (] ]
- 50% Simulations with anti-site disorder

50 % Fe-Al anti-site disorder

G. Shukla....and Sanjay Singh*, Phys. Rev. B 105, 035124 (2022)
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Magnetization and Hall results
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N Pay o« Pt ) found 1.69 which indicates intrinsic contribution. [ = 1 for skew
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G. Shukla....and Sanjay Singh*, Phys. Rev. B 105, 035124 (2022)



Hall analysis
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G. Shukla....and Sanjay Singh™®, Phys. Rev. B 105, 035124 (2022)



First principles calculation

Ordered Disordered S. Bhattacharjee
> \ < 04 ¢
E \\\\.}é 3", 0.2 | Wanrfigu - -
> - .
o0 Nk A4 - - - Yyaner - - _ _ _ \T - 4 -]
: 8 oA
L 5 02
— 000 | _
o N
< 4000 < 0 ‘
S 8
=~ 2000 % -2000 ]
a G -4000 | ]
' 0
W L r X W K I X R M r
The calculated AHC value =42 S/cm The AHC value for the 50 %

Lower than the Experimental intrinsic Fe/Al disorder came out = 63
AHC = 155 S/cm S/cm

Conclusion: disorder in the system can enhance the Berry curvature-induced intrinsic
AHC. It depends upon the disorder-induced change in the electronic band structure.

G. Shukla....and Sanjay Singh*, Phys. Rev. B 105, 035124 (2022)



Is increasing AHC in Co,FeAl due to
antisite disorder
just an incident 777

30



» Spingapless semiconductors exhibit a band
gap for one spin channel and a zero band gap

Spin-gapless semiconducting Heusler compound:

for another spin channel.

» The first experimental evidence of spin-
gapless
observed in the Mn,CoAl compound.

Hall conductivity o, [S cm"]

30

20k

3oL

20 F

10k

semiconductor

Unresolved issue 7?79

m(H) [, ]
[ - L

AHE:
o,=218 S*em’”!

0 200 400 600 8007
Temperature [K] ]

0.0

Magnetic field #[10° Am™]

S. OQuardi et.al. PRL 110, 100401 (2013)

behavior

Mn,CoAl

was

Theory ~ 3 S/cm.

FM Metal

Half metal

1 The experimental anomalous Hall conductivity
" (AHC) ~22 S/cm

Inverse

Heusler
(F-43m)
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Crystal structure (our result): Synchrotron
XRD

Ordered structure

Intensity (arb.unit)
=
(220)

Disordered structure

|
Fe' T

| | T

3 é é 1.2 3
26 (deg.) 20 (deg.)

XRD analysis: 25% anti-site disorder between Mn and Al atoms.

Nisha Shahi,...Sanjay Singh®, Phys. Rev. B 106, 2451 3%2(2022)



Anomalous Hall

: 0F() —2K
Experiment: B
E U] =mEE ~300K
Ou — Lo = e LOOKE
H = (pZ2+p2) ZJ ) -
S _lsi*éggi 15 2K
» Total Hall conductivity ~27 S/cm . T
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Nisha Shahi, ...Sanjay Singh*, Phys. Rev. B 106, 245137 (2022) 33
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Anomalous Hall effect: Theoretical study
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Nisha Shahi, ...Sanjay Singh*, Phys. Rev. B 106, 245137 (2022)




Energy (eV)

What does disorder actually do here??

Ordered Disordered
Sl ~30 S/em
- 3'|'|'|"|'|'|'
:::::*-Pm :;F: [_lm[ljr-_nl}' ) ) "'hh .:lwi%-sp?ﬂ up [ma:m_nr_'- ]. |
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- 2 1
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) L
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\ —é 2F
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-10 -5 0 5 10 g ) IR TP TR ¥ S T
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Disordered enhances half metallic behavior and AHC |

35
Nisha Shahi, ...Sanjay Singh*, Phys. Rev. B 106, 245137 (2022)



Controlling anti-site disorder 1s not

€asSy.....What is an alternative way to enhance AHC?
Chemical disorder 1s in our hands....

36



PHYSICAL REVIEW MATERIALS 5, 124201 (2021)

Role of chemical disorder in tuning the Weyl points in vanadium doped Co,TiSn

Payal Chaudhary ©, Krishna Kant Dubey, Gaurav K. Shukla, and Sanjay Singh
School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India

Surasree Sadhukhan and Sudipta Kanungo
School of Physical Sciences, Indian Institute of Technology Goa, Goa 403401, India

Ajit K. Jena, S.-C. Lee, and S. Bhattacharjee
Indo-Korea Science and Technology Center (IKST), Bangalore 560065, India

Jan Mindr and Sunil Wilfred D’ Souza
New Technologies Research Centre, University of West Bohemia, Univerzitni 8, CZ-306 14 Pilsen, Czech Republic

M (Received 23 December 2020; revised 12 October 2021; accepted 8 November 2021; published 3 December 2021)
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Weyl point and Anomalous Hall conductivity (AHC)

Broken time-reversal
and/or
Inversion symmetry

Dirac semimetal Weyl semimetal

>

A Weyl semimetal is a solid-state crystal whose low
energy excitations are Weyl fermions

Weyl points of opposite chirality act either as source
or sink of Berry curvature.

Berry curvature: Equivalent to fictitious magnetic

field in momentum space

H=+k-o g | ‘.;i- i
', [~ _E-’%’q' “I..‘ |
n"‘ ‘.l ; t.

0,0k = o % e (kY % (S (k)

X ' "
ez ko

e?
Oxy = ‘ijo Q(k)dk = o

Weyl points === [arge Berry curvature === Large AHC
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The problem

Co, (Ti/V)Sn :
Fm-3m (cubic)




The solution

Valence electron
Substituting V (5) in place of T1 (4 VE)??

P &

> P P

@ &
PP @

Co, (TV/V)Sn :
Fm-3m (cubic)

P. Chaudhary.....Sanjay Singh™® Phys. Rev. Mater. 5, 124201 (2021).
40



Material engineering: Tuning of AHE by Chemical disorder

S
0.8 ‘ \
% 0.4 R
bt Wannier
g o - - - .{ ---------
“ 0el |
0.8 }
X T
0.8 .
s 04 ____{
A
B 0
lg 0.4 "'-"'3:?:::—.‘,
0.8 .
-400 -200 0 200 400

AMHC (S/em)

Band structure of Co,Ti, V. Sn.

Band structure (electronic + Wannier,
plots and energy dependence AHC in
Co,TiSn.

AHC for x=0.5is 196.84 S/cm two times of
x=0(~99 S/cm)




Controlling AHC..... Chemical disorder
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Topological materials have attracted significant interest in condensed matter physics for their unique topolog-
ical properties leading to potential technological applications. Topological nodal line semimetals, a subclass Ve r | a r e o
of topological materials, exhibit symmetry-protected nodal lines, where band crossings occur along closed y g U
curves in the three-dimensional Brillouin zone. When the nodal lines are gapped out due to perturbation in
the Hamiltonian, a large Berry curvature (BC) arises in the surrounding area of the gapped nodal line, leading to 1 3 O O S / C m
exotic anomalous transport responses. In this paper, we studied the Co,CrX (X=Ga, Ge) Heusler compounds that
exhibit mirror symmetry-protected nodal line states below the Fermi level. The BC calculation yields anomalous
Hall conductivity (AHC) of about 292 and 217 S/cm for Co,CrX (X=Ga, Ge), respectively, at the Fermi level,
which increases by up to 400% at the nodal line energy level. We theoretically analyzed that 20% and 60% zinc
(Zn) alloying in Co,CrX (X=Ga, Ge) effectively lowers the Fermi level by 50 meV and 330 meV, respectively,
aligning with the protected crossings. Consequently, we identified Co,CrGej4Zng¢ and Co,CrGaggZng, as
compositions to achieve the significant AHC of 800 and 1300 S/cm, respectively. The explicit AHC calculation
for these alloyed compositions is in good agreement with our predictions. Our findings highlight that chemical
alloying is an efficient way to enhance AHC in nodal line hosting materials.
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DOS(states/eV) Spin resolved electronic band structure AHC (S/cm)
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DOI: 10.1103/PhysRevMaterials.8.034203 Sharp increment in AHC due to large BC if we may
shift Fermi level

AHC
Co,CrGa (E-Eg =0¢eV) ~292 S/cm Co,CrGe (E-Eg=0¢eV) ~217 S/cm

Co,CrGa (E-Eg = 50 meV) ~1300 S/cm Co,CrGe (E-Eg =330 meV) ~800 S/cm

» Thus, AHE can be increased by coinciding these band crossings with Fermi level
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Co,VSn,_ Al_Weyl semimetal

. IOptimization

Valence electron: Substituting Al (3 VE) in place of Sn (4 VE) VE)??
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Experimental Investigation

Hall Resistivity and Conductivity of Co,VSn,_ Al
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Summary of Experimental AHC
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Conclusions

»> Resolved the controversy about Anomalous Hall effect in Co,FeAl and Mn,CoAl

Heusler compound and established it quantum origin

» Our work provides a basic understanding that, how the atomic ordering influence
the Berry curvature and give a path to create large AHC due to modification of
the Berry curvature induced by atomic/chemical ordering

» Large (quantum) Anomalous Hall effect may put forward for zero loss and clean

energy devices.
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Anomalous transverse transport phenomena for clean energy

A thermoelectric

counterpart Anomalous Nernst effect (ANE)

Anomalous Hall effect (AHE)

Rev. Mod. Phys. 82, 1539 Sci. technol. adv. Material, 20(1), pp.262-275.
Generation of transverse voltage perpendicular to Generation of transverse voltage perpendicular to
current and applied magnetic field Temp. gradient and magnetic field

Recycling waste heat into electricity

Both governed by

EANE - SANEVT X M

py = RoH + RsM

Berry curvature

AHE is governed by sum of Berry curvature over all occupied states and ANE is determined by the Berry
curvature at Fermi level.
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