From Spins to Circuits: An Introduction to Quantum Many-Body Physics

[Workshop on Quantum Information & Technologies @ IIIT Allahabad]

Dr. Sunil Kumar Mishra

Department of Physics Indian Institute of Technology (BHU) Varanasi

Sunday, 27th July 2025

Why Quantum Many-Body Physics?

- Systems of many interacting quantum particles are inherently close to the workings of nature.
- Many interacting quantum particles may lead to collective phenomena and interesting physics and technology.
- Examples: Superconductivity, magnetism, topological phases, quantum computers

Why Spin Systems are a good choice of quantum many-body system?

- A key to understanding quantum magnetism and magnetic materials.
- Spins (especially spin-1/2) are the simplest nontrivial quantum systems, with a finite-dimensional Hilbert space.
- Form a Minimal model to capture complex quantum phenomena, involving many-particle interactions.
- Interacting spin systems can exhibit a vast range of phenomena: quantum phase transitions, entanglement, topological order, etc.
- Important in the perspective of quantum computation.

Figure: A simple example of spins in a lattice

Basic Motivations

- Spin models are an inherently quantum with no classical analogue
- Key systems to explore quantum phenomena like Superposition, Uncertainty & Entanglement.

Figure: Quantum effects in terms of spins

Outline

Important concepts in Quantum Mechanics

Spins: A Primer

Interactions

Classical vs Quantum

Various spin models

Field Description and the Role of Numerics

Quantum Circuits

Dynamical Aspects

Important concepts in Quantum Mechanics

- Indeterminism \rightarrow Indeterministic because the probability is inherent in quantum mechanics
- lacktriangle Interference ightarrow Even one quantum particle displays an interference pattern
- Uncertainty → Impossible to know both the quantum particle's position and momentum simultaneously and precisely.
- lacksquare Superposition o A quantum particle can be in a linear combination state of allowable states.
- Entanglement → Correlations in some quantum states are stronger than any classical correlations

The simplest quantum system: Two-level system

- Simplest quantum system $\mathcal{H} = E_1 |0\rangle\langle 0| + E_2 |1\rangle\langle 1|$ Two levels $|0\rangle$ and $|1\rangle$ with energies E_1 and E_2 , respectively. Any quantum state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ (Superposition state), Probabilities α and β complex numbers such that $|\alpha|^2 + |\beta|^2 = 1$ (Indeterminism)
- If measured by some operator A, state $|\psi\rangle$ collapses to one of the eigenstates of A such that $A|\psi\rangle = c_a|a\rangle$, $c_a = \langle a|\psi\rangle$ (Measurement destroys the superposition state)
- lacktriangle quantum states evolve unitarily such that $|\psi'
 angle=U|\psi
 angle$ and $|\psi
 angle=U^\dagger|\psi'
 angle$, which implies $UU^\dagger=1$ (Reversibility)

The Spin 1/2 Space: A two-level quantum system

- Intrinsic angular momentum of quantum particles.
- Spin systems: two-level quantum states (qubits).
- As size of Hilbert space is 2, associated operators are of order 2 × 2.

Figure: A representation of spins in the z basis

The Spin 1/2 State:Qubit

- Classical bits \rightarrow 0(or 'off') and 1 (or 'on').
- |0 and |1⟩ quantum equivalent of '0 ' and '1' classical bits and called as Quantum-bits or Qbits
- In general, a qubit state is a linear combination: $|\psi = \alpha|0\rangle + \beta|1\rangle$, $|\alpha|^2 + |\beta|^2 = 1$

Qubits in QC industry

Pauli Matrices and Spin Operators

Spin-1/2 operators defined by Pauli matrices:

$$\sigma_{\mathsf{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{\mathsf{y}} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{\mathsf{z}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Some useful properties:

- Commutation: $[\sigma_i, \sigma_i] = 2i\epsilon_{ijk}\sigma_k$.
- Anticommutation: $\{\sigma_i, \sigma_i\} = 2\delta_{ii} \mathbb{I}$ $\implies \sigma_i \cdot \sigma_i = \delta_{ii} \mathbb{I} + i \epsilon_{iik} \sigma_k$

$$S_{rr} = \frac{\hbar}{\sigma}\sigma_{rr}$$
 $S_{rr} = \frac{\hbar}{\sigma}\sigma_{rr}$ $S_{rr} = \frac{\hbar}{\sigma}\sigma_{rr}$

The corresponding spin operators are

given as: S_x , S_y & S_z .

$$S_x = \frac{\hbar}{2}\sigma_x, \quad S_y = \frac{\hbar}{2}\sigma_y, \quad S_z = \frac{\hbar}{2}\sigma_z,$$

Role of Hamiltonian: Energy

Taking \hat{z} as the conventional magnetic field direction, the energy of a dipole is given as $E = -\vec{\mu} \cdot \vec{B}_z$

■ The magnetic moment is given as:

$$\vec{\mu} = -rac{g_s \vec{S}}{\hbar} \mu_B$$

which is dependent on the spin vector $\vec{S} = (S_x, S_y, S_z)$.

■ Thus, the above energy is expressed by the operator $\hat{H} = -\tilde{\mu}_z S_z$.

Since the eigenvalues of the Hamiltonian give the possible values of energies, we have:

$$E_{+} = \frac{-\gamma B_0 \hbar}{2}$$
$$E_{-} = \frac{-\gamma B_0 \hbar}{2}$$

 $\tilde{\mu}/B_0$ gives the gyromagnetic ratio γ .

Role of Hamiltonian: Dynamics

The Hamiltonian also generates the dynamics within the system following the Schrodinger Equation.

- let χ_+ and χ_- be the eigenstates corresponding to E_\pm .
- $\blacksquare \implies \chi(t) = c_1(t)\chi_+ + c_2(t)\chi_-$

$$c_1(t) = a_0 e^{iE_+ t/\hbar}, \ \ c_2(t) = b_0 e^{iE_- t/\hbar} \ \ |a_0|^2 + |b_0|^2 = 1, ext{(by Normalization)}$$

 $\implies a_0 = \sin(\alpha/2), b_0 = \cos(\alpha/2),$ for a parameter α . This dynamics now describes the Larmour Precession.

Figure: Larmour precession wrt $\langle S \rangle$, with $\omega = \gamma B_0$

An example: Light-Matter Interactions

The spin Hamiltonian can be used to model a simple example of light-matter interaction, describing the Rabi Oscillations.

Here, $\vec{B} = B_0 cos(\Omega_R t) \hat{x} + B_0 sin(\Omega_R t) \hat{y}$ from the incident \mathcal{EM} field, with angular frequency Ω_R .

$$H = -ec{\mu} \cdot ec{\mathcal{B}}$$
 $H = \omega' \Big(cos(\Omega_R t) S_x + sin(\Omega_R t) S_y \Big)$

where $\omega' = \gamma B_0$

Figure: Oscillating occupation probabilities constituting a Rabi cycle

The Many-Body Hilbert Space

So far, we have a single spin Hamiltonian, interacting with an external field. Taking several spins introduces spin-spin interactions, while expanding the Hilbert space. Interactions imply variable-separation is not valid.

$$\mathcal{H}^{(N)} = \mathcal{H}_1 \otimes \mathcal{H}_2 ... \mathcal{H}_N = \bigotimes_{i=1}^N \mathcal{H}_i$$

Eg: For
$$N = 1$$
,

 $\mathsf{Basis} = \{ |0\rangle_z, |1\rangle_z \}$

The basis vectors are given as:

$$\mathsf{basis} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ , \ \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Eg: For N=2,

 $\begin{array}{l} \text{Basis} = \{ \left| 00 \right\rangle_z, \left| 01 \right\rangle_z, \left| 10 \right\rangle_z, \left| 11 \right\rangle_z \} \end{array}$

The basis vectors are given as:

$$\mathsf{basis} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \ , \ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \ , \ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \ , \ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

A Simple Many-Body Hamiltonian

Consider a 1D lattice with points labeled $\{1, 2, ..., i, i + 1, ...N\}$.

Now, we may denote a spin operator S_i^{α} as the operator S_{α} , $(\alpha = x, y, z)$ acting on the lattice site i.

$$\implies S_i^{\alpha} = \mathbb{I}_1 \otimes \mathbb{I}_2 \otimes ... S^{\alpha} ... \otimes \mathbb{I}_N$$
. This further leads to: $[S_j^{\alpha}, S_k^{\beta}] = i \delta_{jk} \epsilon_{\alpha\beta\gamma} S_k^{\gamma}$

Now consider the example:

$$H = -J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

This Hamiltonian describes the spin-spin interaction between nearest-neighbor spins on our 1D lattice. This is the Heisenberg Model.

Magnetic Properties via State

- The nature of interactions tunes the properties of the system, and also affects the ground state of the system.
- The ground state of the system is free from any excitations, and hence reflect the properties of the system at large.
- The adjoining figure shows the ground state corresponding to the observed macroscopic magnetic behavior.

Figure: The ground states corresponding to paramagnetic, ferromagnetic, antiferromagnetic and ferrimagnetic systems

Origin of Interaction Strength

Pauli Exclusion Principle:

- Electrons are fermions; no two can occupy the same quantum state simultaneously.
- The total two-electron wavefunction must be antisymmetric:

$$\Psi_{\mathsf{tot}}(1,2) = -\Psi_{\mathsf{tot}}(2,1)$$

- For parallel spins (symmetric spin part), the spatial wavefunction must be antisymmetric to preserve overall antisymmetry.
- Antisymmetric spatial wavefunctions reduce overlap between electrons.

Reduced Coulomb Repulsion:

■ Coulomb energy:

$$U \propto \left\langle \frac{1}{r_{12}} \right\rangle$$

- Greater overlap ⇒ larger repulsion.
- Antisymmetric spatial wavefunctions ⇒ reduced overlap ⇒ lower Coulomb energy.
- This energy difference gives rise to the exchange interaction.
- J > 0 implies ferromagnetic and J < 0 implies antiferromagnetic ordering.

Ferromagnetic and Antiferromagnetic Ordering

Figure: Interplay between Pauli exclusion and Coulomb repulsion leads to magnetic ordering

Direct and Indirect Exchange

- We have discussed about the nature of magnetism considering short range (direct) exchange.
- However, magnetism also has long range order and that is accomplished via indirect exchange, which requires the presence of a mediating element.

Examples for indirect exchange include:

- Superexchange: Via nonmagnetic anion (e.g., O²⁻), often AFM via Goodenough–Kanamori rules.
- RKKY Interaction: In metals, mediated by conduction electrons; oscillates between FM/AFM with distance

Figure: Indirect coupling via the superexchange mechanism.

Spin-Orbit Coupling

- More physical features are added by the spin-orbit coupling effect, given by the term $H_{soc} = \xi(r)\vec{L} \cdot \vec{S}$.
- SOC locks spin orientation to lattice directions (via L), breaking spin-rotational symmetry

 H_{soc} leads to Dzyaloshinskii-Moriya interaction, between two spins S_1 and S_2 on a lattice bond r_{12} with no inversion center.

$$H_{DMI} = D_{ij}(H_{soc})\vec{S}_i imes \vec{S}_j$$

 D_{ij} depends on H_{soc} , adds non-collinear spin texture resulting in net magnetization $M \neq 0$ in an otherwise collinear antiferromagnet (weak ferromagnetism).

Figure: Non-collinearity in spins under H_{DMI}

Spin Configurations and Magnetic Ordering

- The FM and AFM order is reflected in ground the ground state at $T \approx 0K$.
- Upon increasing the temperature, thermal fluctuations appear, which destroy the magnetic order.
- This is phase transition, and the specific temperature is called as the Curie point T_C (for FM) and Neel point T_N (for AFM)

Figure: Phase diagram for FM/AFM to paramagnetic transition at T_C/T_N

Classical Phase Transitions

- Classical phase transitions are driven by a competition between magnetic ordering and thermal fluctuations.
- The simplest example is the transition between ferromagnetic and paramagnetic phases between the Ising model:

$$H = J \sum_{i} S_{i}^{x} S_{i+1}^{x} + h_{x} \sum_{i} S_{i}^{x}.$$

By the Landau paradigm the phase of a system corresponds to the free energy minima.

Figure: (a) Ferromagnetic and Paramagnetic states (b) along for the corresponding minima for the possible ferro states.

Quantum Versions of Phase Transition

- Contrary to classical phase transitions which require an element of thermal fluctuations,
- Quantum Phase Transitions occur at zero kelvin where thermal fluctuations are impossible.
- Instead such phase transitions occur due to quantum fluctuations.
- Since they occur at zero temperature limit, ground states serve as an efficient discriminator.

Figure: Phase structure with under quantum phase transition, along with contrasting ground states.

The above phase structure is for:

$$H = J \sum_{i} S_{i}^{x} S_{i+1}^{x} + h_{x} \sum_{i} S_{i}^{x} + h_{z} \sum_{i} S_{i}^{z}$$

Entanglement in Quantum Systems

Entanglement between subsystems A and B within the entire system defined by ψ is given as:

$$egin{aligned} S_{L}(\psi) &= \eta \Big(1 - tr
ho_A^2 \Big) \ &= \eta \Big(1 - tr
ho_B^2 \Big) \end{aligned}$$

 η is defined such that $S_L(\psi) \in [0,1]$

$$\eta = \frac{1}{d(d+1)}, d = min(d_A, d_B)$$

Figure: Pure and mixed partial states ^a

^aChoi et.al. Nature **528** 77-83(2015)

Entanglement as a probe

- Entanglement within the ground state serves as a metric for classifying the phase of the system
- The dependence on entanglement with system size follows the relation:

$$S(A/\bar{A}) = \alpha \partial A - \gamma$$

where ∂A represents the boundary of the system, and γ is a constant called as topological quantum entropy

p = 0.6 p = 0.7

 $\rightarrow = 0.8$

Figure: An example of the entanglement being used as a probe for quantum phase transition induced by measurements

Ref: Claeys at.al Phys. Rev. Research 4, 043212 (2022)

Various spin models

1d spin models

$$\mathcal{H} = -g\mu_B h \sum_{j=1}^L S_j^z - \sum_{j=1}^L (J_x S_j^x S_{j+1}^x + J_y S_j^y S_{j+1}^y + J_z S_j^z S_{j+1}^z).$$

h =magnetic field, J_x, J_y, J_z are exchange interaction coefficients, L spins

- \blacksquare $J_x=0, J_y=0, J_z\neq 0 \rightarrow$ Longitudinal Ising model (Exact solution, Ising 1925)
- $lacksquare J_x = J_y = J_z = J
 ightarrow XXX$ Heisenberg model (Exact solution, Bethe 1931)
- lacksquare $J_x
 eq J_y, J_z = 0 o XY ext{ model (Exact solution, Lieb, Shulz, Mattis 1961)}$
- $J_x \neq 0, J_y, J_z = 0 \rightarrow$ Transverse Ising model (Exact solution, similar to XY model, Lieb, Shulz, Mattis 1961)
- $J_x = J_y \neq J_z \rightarrow XXZ$ model (Exact solution, Orbach 1958)
- $lacksquare J_x
 eq J_y
 eq J_z
 eq 0
 ightarrow {\sf XYZ} \; {\sf model} \; ({\sf Exact solution, Baxter} \; 1972 \;)$

2d spin model: Quantum Skyrmions

Hamiltonian $\hat{H} = \sum \mathbf{D}_{i,j} \left[\hat{S}_i \times \hat{S}_j \right] + J_1 \sum \hat{S}_i \hat{S}_j + J_2 \sum \hat{S}_i \hat{S}_j + B \sum \hat{S}_i^z$ Nearest Next nearest neighbour neighbour DMI interaction antiferromagnetic ferromagnetic Non-colinearity of spins. $Frustration \rightarrow produce skyrmion$ texture. Zeeman term deformation parameter.

Figure: Lattice structure for given hamiltonian and skyrmion texture

VBS Solids

- Valence bond solid (VBS) states are quantum ground states with short-range singlet pairing between neighboring spins.
- VBS order breaks lattice translational symmetry, leading to dimerized or more complex bond patterns.
- The AKLT model is a well-known example where the exact VBS ground state can be written analytically.

Figure: An example of the VBS order in (a) Resonating valence band spin liquid (b) columnar VBS.

Ref: Sandvik, AIP Conf. Proc. 1297, 135 (2010)

Model for Quantum Phase Transition

VBS States also show Quantum Phase Transition

dimers. Each unit cell contains 4 B ions

- B. The PS phase in the square lattice with J and J' bonds.
- C. The AFM phase that breaks the O(3) symmetry

Fig. A. Atomic structure of the SrCu₂(BO₃)₂ plane. Pairs of Cu form spin Fig. The phase diagram of the Shastry-Sutherland model. The arrows in the right panel illustrate the Neel order. In between the well-established dimer and Neel phase we find a phase with plaquette long-range order

Field Description and the Role of Numerics

Mapping Spins to Hard-Core Bosons

■ Spin- $\frac{1}{2}$ operators, $S_i^+ = S_i^x - iS_i^y$

$$S_i^+ = \ket{\uparrow} ra{\downarrow}, \quad S_i^- = \ket{\downarrow} ra{\uparrow}, \quad S_i^z = \frac{1}{2} (\ket{\uparrow} ra{\uparrow} - \ket{\downarrow} ra{\downarrow})$$

■ Mapped to hard-core boson operators:

$$S_i^+ \leftrightarrow b_i^\dagger, \quad S_i^- \leftrightarrow b_i, \quad S_i^z = b_i^\dagger b_i - \frac{1}{2}$$

- Hard-core constraint: $(b_i^{\dagger})^2 = 0$ no double occupancy.
- Useful for reformulating spin models in bosonic language.

Spin State

Boson State

Jordan-Wigner Transformation: Hard Bosons to Fermions

■ Hard-core bosons obey:

$$\{b_i,b_i^{\dagger}\}=\delta_{ii},\quad (b_i^{\dagger})^2=0$$

- However, they commute on different sites: $[b_i, b_i] = 0$, unlike fermions.
- Jordan-Wigner transformation maps hard bosons to fermions:

$$b_j = \left(\prod_{k < j} \mathcal{Z}_k
ight) c_j, \quad b_j^\dagger = \left(\prod_{k < j} \mathcal{Z}_k
ight) c_j^\dagger$$

where $Z_k = 1 - 2c_k^{\dagger}c_k$

lacksquare The string ensures correct anticommutation: $\{c_i,c_j^\dagger\}=\delta_{ij}$

Bogoliubov Transformation: Fermions to Quasiparticles

■ Consider a quadratic fermionic Hamiltonian:

$$H = \sum_{k} \left[\epsilon_{k} c_{k}^{\dagger} c_{k} + \Delta_{k} c_{k}^{\dagger} c_{-k}^{\dagger} + \Delta_{k}^{*} c_{-k} c_{k} \right]$$

- This describes **pairing** between fermions at opposite momenta.
- Bogoliubov transformation defines new fermionic quasiparticles:

$$\gamma_k = u_k c_k + v_k c_{-k}^{\dagger}, \quad \gamma_{-k} = u_k c_{-k} - v_k c_k^{\dagger}$$

■ The coefficients u_k , v_k are chosen to **diagonalize** the Hamiltonian:

$$H = \sum_{k} E_{k} \left(\gamma_{k}^{\dagger} \gamma_{k} - \frac{1}{2} \right)$$

Mbeng et.al. SciPost Phys. Lect. Notes 82 (2024)

Non-integrable Models: Computational Methods

- Non-integrable models lack an extensive set of conserved quantities.
- Cannot be mapped to independent single-particle modes.
- Many-body interactions dominate dynamics and eigenstates.
- Require full many-body Hilbert space treatment.
- Exhibit quantum chaos, thermalization, and eigenstate complexity.

Hence, computational methods are required, but they have **exponentially** scaling computational requirements.

Number of sites	Number of states	Hamiltonian size in memory
4	16	2048 B
9	512	2 MB
16	65536	34 GB
25	33554432	9 PB
36	6.872e10	40 ZB

Iterative Diagonalization: Lanczos Method

- Iterative method for finding extremal eigenvalues of large sparse matrices.
- Builds a tridiagonal matrix in a Krylov subspace.
- Efficient for computing ground states in many-body quantum systems.

Block-Diagonal Hamiltonians and Symmetry

■ Time evolution of an observable:

$$rac{d}{dt}\langle\hat{O}(t)
angle=rac{i}{\hbar}\langle[H,\hat{O}]
angle$$

- If $[H, \hat{O}] = 0$, then $\langle \hat{O}(t) \rangle$ is conserved over time.
- Such symmetries imply the Hilbert space splits into invariant subspaces.
- The Hamiltonian becomes block-diagonal in the basis of simultaneous eigenstates of commuting operators, greatly reducing computational cost.

Off-diagonal = 0

Quantum Circuits

- Quantum circuits manipulate qubit states via unitary gates.
- A single-qubit gate is represented by a 2 × 2 unitary matrix.
- Any single-qubit unitary gate corresponds to a rotation on the Bloch sphere.
- General rotation:

$$U(\vec{n},\theta) = e^{-i\frac{\theta}{2}\vec{n}\cdot\vec{\sigma}}$$

where \vec{n} is the rotation axis, θ the angle, and $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$.

 Circuit depth and structure determine the entanglement and computational complexity.

Figure: The block sphere representation of qubits. Quantum gates are rotation operations on the bloch sphere.

Heisenberg Evolution as Circuit

- Trotterization approximates time evolution by sequentially applying local terms: $e^{-iHt} \approx \prod e^{-ih_{ij}\Delta t}$.
- Each local term h_{ij} (e.g., $\vec{S}_i \cdot \vec{S}_j$) is implemented using rotation and entangling gates.

Figure: The circuit for N = 5, and t = 3

Implementation Results

Figure: Results for a global quench for TFIM from a domain wall initial state. (a, b) The local magnetization of the fourth and sixth spins of the chain with N = 6, and (c) is for the sixth spin for longer times

Dynamical Aspects

Quantum Chaotic Models

Setting: Dynamics generated by a brickwall circuit made up by repeating units of $U \in \mathcal{DU}(q)$, for q = 2, 3.

Motivation: A class of circuit which allows for maximally chaotic behaviour in a minimal model.

We define the circuit for a single time step as (with PBC):

$$\mathcal{U} = \left(\bigotimes_{i \in \mathcal{Z}_{even}} U^{i,i+1}. \bigotimes_{j \in \mathcal{Z}_{odd}} U^{j,j+1} \right).$$

This maybe graphically denoted as:

The remaining parameter is the intial state, denoted as:

$$|\psi
angle_{\mathit{initial}} = rac{1}{q^{\mathit{N}/2}} \Big(\sum_{i,j=0}^{q-1} m_{ij} |ij
angle\Big)^{\otimes \mathit{N}} \quad ,$$

$$|a|$$
 $|a|$ $|a|$

Random Quantum Circuits

- Random quantum circuits consist of layers of randomly chosen local unitary gates.
- They break symmetries and avoid conservation laws, mimicking non-integrable dynamics.
- Such circuits exhibit fast entanglement growth and thermalization-like behavior.
- Useful for studying quantum chaos, scrambling, and eigenstate thermalization hypothesis (ETH).

Figure: A schematic random quantum circuit, with each gate corresponding to randomly selected parameters

Recap

- **Spins:** A **Primer** Spin-1/2 systems as minimal models for quantum two-level systems (qubits).
- **Interactions** Magnetic properties arise from spin-spin interactions, exchange mechanisms, and symmetry considerations.
- Classical vs Quantum Contrasting phase transitions, with quantum fluctuations dominating at T = 0.
- **Some Examples** Realizations like Floquet models, skyrmions, and VBS illustrate emergent phenomena.
- **Field Description and Numerics** Reformulating spin models via mappings enables computational approaches.
- Quantum Circuits Time evolution and dynamics encoded using unitary gate-based circuits.
- **Dynamical Aspects** Random and chaotic circuits as minimal models for entanglement spreading and ETH.

Summary

- Spin systems offer a foundational framework to study collective quantum phenomena.
- Many-body models reveal rich behavior from magnetism and phase transitions to entanglement and chaos.
- Quantum circuits bridge the gap between theoretical models and physical implementations in quantum computing.
- Analytical tools and numerical methods together help explore non-integrable dynamics beyond solvable regimes.
- The study of quantum dynamics and entanglement is central to modern developments in condensed matter and quantum information science.