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Why Quantum Many-Body Physics?

Systems of many interacting quantum particles are inherently close to the
workings of nature.

Many interacting quantum particles may lead to collective phenomena and
interesting physics and technology.

Examples: Superconductivity, magnetism, topological phases, quantum
computers



Why Spin Systems are a good choice of quantum many-body

system?
A key to understanding quantum magnetism and magnetic materials.
Spins (especially spin-1/2) are the simplest nontrivial quantum systems,
with a finite-dimensional Hilbert space.
Form a Minimal model to capture complex quantum phenomena, involving
many-particle interactions.
Interacting spin systems can exhibit a vast range of phenomena: quantum
phase transitions, entanglement, topological order, etc.
Important in the perspective of quantum computation.

Figure: A simple example of spins in a lattice



Basic Motivations

Spin models are an
inherently quantum
with no classical
analogue

Key systems to explore
quantum phenomena
like Superposition,
Uncertainty &
Entanglement.

Figure: Quantum effects in terms of spins
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Important concepts in Quantum Mechanics



Important concepts in Quantum Mechanics

Indeterminism → Indeterministic because the probability is inherent in
quantum mechanics

Interference → Even one quantum particle displays an interference pattern

Uncertainty → Impossible to know both the quantum particle’s position and
momentum simultaneously and precisely.

Superposition → A quantum particle can be in a linear combination state of
allowable states.

Entanglement → Correlations in some quantum states are stronger than any
classical correlations



The simplest quantum system: Two-level system

Simplest quantum system
H = E1|0⟩⟨0|+ E2|1⟩⟨1|
Two levels |0⟩ and |1⟩ with energies E1 and E2,
respectively.
Any quantum state |ψ⟩ = α|0⟩+ β|1⟩ (Superposition
state),
Probabilities α and β complex numbers such that
|α|2 + |β|2=1 (Indeterminism)

If measured by some operator A, state |ψ⟩ collapses to
one of the eigenstates of A such that A|ψ⟩ = ca|a⟩,
ca =< a|ψ⟩ (Measurement destroys the superposition
state)

quantum states evolve unitarily such that |ψ′⟩ = U|ψ⟩
and |ψ⟩ = U†|ψ′⟩, which implies UU† = 1 (Reversibility)

|1>

|0>E1

E2

E2-E1

a
two-level quantum system



Spins: A Primer



The Spin 1/2 Space: A two-level quantum system

Intrinsic angular momentum of
quantum particles.

Spin systems: two-level quantum
states (qubits).

As size of Hilbert space is 2,
associated operators are of order
2× 2.

Figure: A representation of spins in the z
basis



The Spin 1/2 State:Qubit

Classical bits → 0(or ‘off’) and 1 (or ‘on’).

|0 and |1⟩ quantum equivalent of ‘0 ’ and ‘1’ classical
bits and called as Quantum-bits or Qbits

In general, a qubit state is a linear combination:
|ψ = α|0⟩+ β|1⟩, |α|2 + |β|2 = 1

Stern-Gerlach
experiment (1922), Figure Source: wikipedia



Qubits in QC industry



Pauli Matrices and Spin Operators

Spin-1/2 operators defined by Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
Some useful properties:

Commutation: [σi , σj ] = 2iϵijkσk .

Anticommutation: {σi , σj} = 2δij I
=⇒ σi · σj = δij I+ iϵijkσk

The corresponding spin operators are
given as: Sx , Sy & Sz .

Sx =
ℏ
2
σx , Sy =

ℏ
2
σy , Sz =

ℏ
2
σz ,



Role of Hamiltonian: Energy

Taking ẑ as the conventional magnetic field direction, the energy of a dipole is
given as E = −µ⃗ · B⃗z

The magnetic moment is given as:

µ⃗ = −gs S⃗

ℏ
µB

which is dependent on the spin
vector S⃗ = (Sx , Sy , Sz).

Thus, the above energy is expressed
by the operator Ĥ = −µ̃zSz .

Since the eigenvalues of the Hamiltonian
give the possible values of energies, we
have:

E+ =
−γB0ℏ

2

E− =
−γB0ℏ

2

µ̃/B0 gives the gyromagnetic ratio γ.



Role of Hamiltonian: Dynamics
The Hamiltonian also generates the dynamics within the system following the
Schrodinger Equation.

let χ+ and χ− be the eigenstates
corresponding to E±.

=⇒ χ(t) = c1(t)χ+ + c2(t)χ−

c1(t) = a0e
iE+t/ℏ, c2(t) = b0e

iE−t/ℏ

|a0|2 + |b0|2 = 1, (by Normalization)

=⇒ a0 = sin(α/2), b0 = cos(α/2), for
a parameter α. This dynamics now
describes the Larmour Precession. Figure: Larmour precession wrt ⟨S⟩, with

ω = γB0



An example: Light-Matter Interactions

The spin Hamiltonian can be used to model a simple example of light-matter
interaction, describing the Rabi Oscillations.

Here, B⃗ = B0cos(ΩRt)x̂ + B0sin(ΩRt)ŷ
from the incident EM field, with
angular frequency ΩR .

H = −µ⃗ · B⃗

H = ω′
(
cos(ΩRt)Sx + sin(ΩRt)Sy

)
where ω′ = γB0 Figure: Oscillating occupation probabilities

constituting a Rabi cycle



The Many-Body Hilbert Space
So far, we have a single spin Hamiltonian, interacting with an external field.
Taking several spins introduces spin-spin interactions, while expanding the Hilbert
space. Interactions imply variable-separation is not valid.

H(N) = H1 ⊗H2...HN = ⊗N
i=1Hi

Eg: For N = 1,
Basis = {|0⟩z , |1⟩z}
The basis vectors are given as:

basis =

(
1
0

)
,

(
0
1

)
Eg: For N = 2,
Basis = {|00⟩z , |01⟩z , |10⟩z , |11⟩z}
The basis vectors are given as:

basis =


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1





A Simple Many-Body Hamiltonian

Consider a 1D lattice with points labeled {1, 2, ..., i , i + 1, ...N}.
Now, we may denote a spin operator Sα

i as the operator Sα, (α = x , y , z) acting
on the lattice site i .
=⇒ Sα

i = I1 ⊗ I2 ⊗ ...Sα...⊗ IN . This further leads to: [Sα
j , S

β
k ] = iδjkϵαβγS

γ
k

Now consider the example:

H = −J
∑
⟨i ,j⟩

S⃗i · S⃗j

This Hamiltonian describes the spin-spin interaction between nearest-neighbor
spins on our 1D lattice. This is the Heisenberg Model.



Interactions



Magnetic Properties via State

The nature of interactions tunes
the properties of the system, and
also affects the ground state of the
system.

The ground state of the system is
free from any excitations, and
hence reflect the properties of the
system at large.

The adjoining figure shows the
ground state corresponding to the
observed macroscopic magnetic
behavior.

Figure: The ground states corresponding to
paramagnetic, ferromagnetic, antiferromagnetic
and ferrimagnetic systems



Origin of Interaction Strength

Pauli Exclusion Principle:

Electrons are fermions; no two can occupy
the same quantum state simultaneously.

The total two-electron wavefunction must
be antisymmetric:

Ψtot(1, 2) = −Ψtot(2, 1)

For parallel spins (symmetric spin part),
the spatial wavefunction must be
antisymmetric to preserve overall
antisymmetry.

Antisymmetric spatial wavefunctions
reduce overlap between electrons.

Reduced Coulomb Repulsion:

Coulomb energy:

U ∝
〈

1

r12

〉
Greater overlap ⇒ larger repulsion.

Antisymmetric spatial wavefunctions ⇒
reduced overlap ⇒ lower Coulomb energy.

This energy difference gives rise to the
exchange interaction.

J > 0 implies ferromagnetic and J < 0
implies antiferromagnetic ordering.



Ferromagnetic and Antiferromagnetic Ordering

Figure: Interplay between Pauli exclusion and Coulomb repulsion leads to magnetic ordering



Direct and Indirect Exchange
We have discussed about the nature of magnetism considering short range
(direct) exchange.

However, magnetism also has long range order and that is accomplished via
indirect exchange, which requires the presence of a mediating element.

Examples for indirect exchange include:

1. Superexchange: Via nonmagnetic
anion (e.g., O2−), often AFM via
Goodenough–Kanamori rules.

2. RKKY Interaction: In metals,
mediated by conduction electrons;
oscillates between FM/AFM with
distance Figure: Indirect coupling via the

superexchange mechanism.



Spin-Orbit Coupling

More physical features are added by the spin-orbit coupling effect, given by the term
Hsoc = ξ(r)L⃗ · S⃗ .

SOC locks spin orientation to lattice directions (via L), breaking spin-rotational symmetry

Hsoc leads to Dzyaloshinskii-Moriya interaction, between
two spins S1 and S2 on a lattice bond r12 with no
inversion center.

HDMI = Dij(Hsoc)S⃗i × S⃗j

Dij depends on Hsoc , adds non-collinear spin texture

resulting in net magnetization M ̸= 0 in an otherwise

collinear antiferromagnet (weak ferromagnetism).

Figure: Non-collinearity in spins
under HDMI



Spin Configurations and Magnetic Ordering

The FM and AFM order is
reflected in ground the ground
state at T ≈ 0K .

Upon increasing the temperature,
thermal fluctuations appear,
which destroy the magnetic order.

This is phase transition, and the
specific temperature is called as
the Curie point TC (for FM) and
Neel point TN (for AFM) Figure: Phase diagram for FM/AFM to

paramagnetic transition at TC/TN



Classical vs Quantum



Classical Phase Transitions

Classical phase transitions are
driven by a competition between
magnetic ordering and thermal
fluctuations.

The simplest example is the
transition between ferromagnetic
and paramagnetic phases between
the Ising model:
H = J

∑
i S

x
i S

x
i+1 + hx

∑
i S

x
i .

By the Landau paradigm the phase
of a system corresponds to the free
energy minima.

Figure: (a) Ferromagnetic and Paramagnetic
states (b) along for the corresponding minima
for the possible ferro states.



Quantum Versions of Phase Transition

Contrary to classical phase
transitions which require an
element of thermal fluctuations,

Quantum Phase Transitions occur
at zero kelvin where thermal
fluctuations are impossible.

Instead such phase transitions
occur due to quantum fluctuations.

Since they occur at zero
temperature limit, ground states
serve as an efficient discriminator.

Figure: Phase structure with under quantum
phase transition, along with contrasting ground
states.

The above phase structure is for:

H = J
∑
i

Sx
i S

x
i+1+hx

∑
i

Sx
i +hz

∑
i

S z
i



Entanglement in Quantum Systems

Entanglement between subsystems A and B
within the entire system defined by ψ is
given as:

SL(ψ) = η
(
1− trρ2A

)
= η
(
1− trρ2B

)
η is defined such that SL(ψ) ∈ [0, 1]

η =
1

d(d + 1)
, d = min(dA, dB)

Figure: Pure and mixed partial states a

aChoi et.al. Nature 528 77-83(2015)



Entanglement as a probe

Entanglement within the ground
state serves as a metric for
classifying the phase of the system

The dependence on entanglement
with system size follows the
relation:

S(A/Ā) = α∂A− γ

where ∂A represents the boundary
of the system, and γ is a constant
called as topological quantum
entropy

Figure: An example of the entanglement
being used as a probe for quantum phase
transition induced by measurements

Ref: Claeys at.al Phys. Rev. Research 4, 043212 (2022)



Various spin models



1d spin models

H = −gµBh
∑L

j=1 S
z
j −

∑L
j=1(JxS

x
j S

x
j+1 + JyS

y
j S

y
j+1 + JzS

z
j S

z
j+1).

h =magnetic field, Jx , Jy , Jz are exchange interaction coefficients, L spins

Jx = 0, Jy = 0, Jz ̸= 0 → Longitudinal Ising model (Exact solution, Ising
1925 )

Jx = Jy = Jz = J → XXX Heisenberg model (Exact solution, Bethe 1931 )

Jx ̸= Jy , Jz = 0 → XY model (Exact solution, Lieb, Shulz, Mattis 1961 )

Jx ̸= 0, Jy , Jz = 0 → Transverse Ising model (Exact solution, similar to XY
model, Lieb, Shulz, Mattis 1961 )

Jx = Jy ̸= Jz → XXZ model (Exact solution, Orbach 1958 )

Jx ̸= Jy ̸= Jz ̸= 0 → XYZ model (Exact solution, Baxter 1972 )



2d spin model: Quantum Skyrmions

Figure: Lattice structure for given
hamiltonian and skyrmion texture

Ref: Vipin V. et.al., Phys. Rev. B 107, L100419 (2023)



VBS Solids

Valence bond solid (VBS) states
are quantum ground states with
short-range singlet pairing between
neighboring spins.

VBS order breaks lattice
translational symmetry, leading to
dimerized or more complex bond
patterns.

The AKLT model is a well-known
example where the exact VBS
ground state can be written
analytically.

Figure: An example of the VBS order in (a)
Resonating valence band spin liquid (b)
columnar VBS.

Ref: Sandvik, AIP Conf. Proc. 1297, 135 (2010)



Model for Quantum Phase Transition
VBS States also show Quantum Phase Transition

Ref: Cui et al. Proximate deconfined quantum critical point in SrCu2(BO3)2, Science 380 ,1179-1184(2023)



Field Description and the Role of Numerics



Mapping Spins to Hard-Core Bosons

Spin-1
2
operators, S+

i = Sx
i − iSy

i

S+
i = |↑⟩ ⟨↓| , S−

i = |↓⟩ ⟨↑| , S z
i =

1

2
(|↑⟩ ⟨↑|−|↓⟩ ⟨↓|)

Mapped to hard-core boson operators:

S+
i ↔ b†i , S−

i ↔ bi , S z
i = b†i bi −

1

2

Hard-core constraint: (b†i )
2 = 0 — no

double occupancy.

Useful for reformulating spin models in
bosonic language.

Spin State

↑

↓

Boson State

occupied

empty



Jordan-Wigner Transformation: Hard Bosons to Fermions
Hard-core bosons obey:

{bi , b†j } = δij , (b†i )
2 = 0

However, they commute on different sites: [bi , bj ] = 0, unlike fermions.
Jordan-Wigner transformation maps hard bosons to fermions:

bj =

(∏
k<j

Zk

)
cj , b†j =

(∏
k<j

Zk

)
c†j

where Zk = 1− 2c†kck
The string ensures correct anticommutation: {ci , c†j } = δij

1 2 3 4

bj =
∏

k<j Zk · cj

Spin/Hard boson chain



Bogoliubov Transformation: Fermions to Quasiparticles
Consider a quadratic fermionic Hamiltonian:

H =
∑
k

[
ϵkc

†
k ck +∆kc

†
k c

†
−k +∆∗

kc−kck
]

This describes pairing between fermions at
opposite momenta.

Bogoliubov transformation defines new fermionic
quasiparticles:

γk = ukck + vkc
†
−k , γ−k = ukc−k − vkc

†
k

The coefficients uk , vk are chosen to diagonalize
the Hamiltonian:

H =
∑
k

Ek

(
γ†kγk −

1

2

)

ck c†−k

γk = ukck + vkc
†
−k

γk

Mbeng et.al. SciPost Phys. Lect. Notes 82 (2024)



Non-integrable Models: Computational Methods
Non-integrable models lack an extensive set of conserved quantities.

Cannot be mapped to independent single-particle modes.

Many-body interactions dominate dynamics and eigenstates.

Require full many-body Hilbert space treatment.

Exhibit quantum chaos, thermalization, and eigenstate complexity.

Hence, computational methods are required, but they have exponentially
scaling computational requirements.



Iterative Diagonalization: Lanczos Method

Iterative method for finding
extremal eigenvalues of large sparse
matrices.

Builds a tridiagonal matrix in a
Krylov subspace.

Efficient for computing ground
states in many-body quantum
systems.



Block-Diagonal Hamiltonians and Symmetry

Time evolution of an observable:

d

dt
⟨Ô(t)⟩ = i

ℏ
⟨[H , Ô]⟩

If [H , Ô] = 0, then ⟨Ô(t)⟩ is conserved over
time.

Such symmetries imply the Hilbert space
splits into invariant subspaces.

The Hamiltonian becomes block-diagonal in
the basis of simultaneous eigenstates of
commuting operators, greatly reducing
computational cost.

H1

H2

H3

Off-diagonal = 0

Ref: Jung et.al. Journal of the Korean Physical Society, Volume 76, pages 670–683, (2020)



Quantum Circuits



Quantum Circuits

Quantum circuits manipulate qubit states
via unitary gates.

A single-qubit gate is represented by a
2× 2 unitary matrix.

Any single-qubit unitary gate corresponds
to a rotation on the Bloch sphere.

General rotation:

U(n⃗, θ) = e−i θ2 n⃗·σ⃗

where n⃗ is the rotation axis, θ the angle,
and σ⃗ = (σx , σy , σz).

Circuit depth and structure determine the
entanglement and computational
complexity.

Figure: The block sphere representation of
qubits. Quantum gates are rotation
operations on the bloch sphere.



Heisenberg Evolution as Circuit

Trotterization approximates time evolution by sequentially applying local
terms: e−iHt ≈

∏
e−ihij∆t .

Each local term hij (e.g., S⃗i · S⃗j) is implemented using rotation and
entangling gates.

Figure: The circuit for N = 5, and t = 3



Implementation Results

Figure: Results for a global quench for TFIM from a domain wall initial state. (a, b)
The local magnetization of the fourth and sixth spins of the chain with N = 6, and (c)
is for the sixth spin for longer times

Ref: Smith et.al. npj Quantum Information Volume 5, Article number: 106 (2019)



Dynamical Aspects



Quantum Chaotic Models
Setting: Dynamics generated by a brickwall circuit made up by repeating units
of U ∈ DU(q), for q = 2, 3.

Motivation: A class of circuit which allows for maximally chaotic behaviour in a
minimal model.

We define the circuit for a single time step as
(with PBC):

U =
(
⊗i∈Zeven U

i ,i+1.⊗j∈Zodd
U j ,j+1

)
.

This maybe graphically denoted as:

U =

0 1 2 3 4 5 6 7 8 9 10 11 12

.

The remaining parameter is the
intial state, denoted as:

|ψ⟩initial =
1

qN/2

( q−1∑
i ,j=0

mij |ij⟩
)⊗N

,

|ψinit⟩ = 1 2 3 4 5 6 7 8 9 101112 .



Random Quantum Circuits

Random quantum circuits consist of layers
of randomly chosen local unitary gates.

They break symmetries and avoid
conservation laws, mimicking non-integrable
dynamics.

Such circuits exhibit fast entanglement
growth and thermalization-like behavior.

Useful for studying quantum chaos,
scrambling, and eigenstate thermalization
hypothesis (ETH).

Figure: A schematic random
quantum circuit, with each gate
corresponding to randomly
selected parameters



Conclusions



Recap
Spins: A Primer — Spin-1/2 systems as minimal models for quantum
two-level systems (qubits).

Interactions — Magnetic properties arise from spin-spin interactions,
exchange mechanisms, and symmetry considerations.

Classical vs Quantum — Contrasting phase transitions, with quantum
fluctuations dominating at T = 0.

Some Examples — Realizations like Floquet models, skyrmions, and VBS
illustrate emergent phenomena.

Field Description and Numerics — Reformulating spin models via
mappings enables computational approaches.

Quantum Circuits — Time evolution and dynamics encoded using unitary
gate-based circuits.

Dynamical Aspects — Random and chaotic circuits as minimal models for
entanglement spreading and ETH.



Summary

Spin systems offer a foundational framework to study collective quantum
phenomena.

Many-body models reveal rich behavior — from magnetism and phase
transitions to entanglement and chaos.

Quantum circuits bridge the gap between theoretical models and physical
implementations in quantum computing.

Analytical tools and numerical methods together help explore non-integrable
dynamics beyond solvable regimes.

The study of quantum dynamics and entanglement is central to modern
developments in condensed matter and quantum information science.
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