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Why Quantum Many-Body Physics?

m Systems of many interacting quantum particles are inherently close to the
workings of nature.

®m Many interacting quantum particles may lead to collective phenomena and
interesting physics and technology.

m Examples: Superconductivity, magnetism, topological phases, quantum
computers



Why Spin Systems are a good choice of quantum many-body
system?

® A key to understanding quantum magnetism and magnetic materials.

m Spins (especially spin-1/2) are the simplest nontrivial quantum systems,
with a finite-dimensional Hilbert space.

®m Form a Minimal model to capture complex quantum phenomena, involving
many-particle interactions.

B [nteracting spin systems can exhibit a vast range of phenomena: quantum
phase transitions, entanglement, topological order, etc.

® |mportant in the perspective of quantum computation.
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Figure: A simple example of spins in a lattice



Basic Motivations

m Spin models are an

inherently quantum ¢1m% ‘r\/\f\/\ l
with no classical
analogue

m Key systems to explore l . * *

quantum phenomena
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Figure: Quantum effects in terms of spins
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Important concepts in Quantum Mechanics



Important concepts in Quantum Mechanics

® |ndeterminism — Indeterministic because the probability is inherent in
quantum mechanics

m |nterference — Even one quantum particle displays an interference pattern

® Uncertainty — Impossible to know both the quantum particle's position and
momentum simultaneously and precisely.

m Superposition — A quantum particle can be in a linear combination state of
allowable states.

m Entanglement — Correlations in some quantum states are stronger than any
classical correlations



The simplest quantum system: Two-level system

B Simplest quantum system
H = £10)(0] + El1)(1]
Two levels |0) and |1) with energies E; and Ej,
respectively.
Any quantum state |¢)) = «|0) + 5|1) (Superposition

state), £ 1>
Probabilities o and 3 complex numbers such that :
|a|? + |B]?=1 (Indeterminism) E,-E,

B |f measured by some operator A, state |¢) collapses to E, 10> ,
one of the eigenstates of A such that AlY)) = c,|a), two-level quantum system
¢, =< a|yp) (Measurement destroys the superposition
state)

B quantum states evolve unitarily such that [¢)') = Uly)
and [¢) = UT|¢’), which implies UUT = 1 (Reversibility)



Spins: A Primer



The Spin 1/2 Space: A two-level quantum system

S, ¢ S,
s
® [ntrinsic angular momentum of ﬂ” - ‘b :
quantum particles. - ‘ ’ ‘
— — — 4 — i

® Spin systems: two-level quantum
states (qubits).

m As size of Hilbert space is 2,
associated operators are of order
2 X 2. It)=

i

<

\ L B
/ )= 2/

1
o
2

Figure: A representation of spins in the z
basis



The Spin 1/2 State:Qubit

Classical Bit

No superposition
0

Classical states

B Classical bits — 0(or ‘off’) and 1 (or ‘on’).

B |0 and |1) quantum equivalent of ‘0 " and ‘1’ classical

Quantum Bit

N qubits.
2" paths

Superposition a|0> +b| 1>

Quantum states

Source: IBM

bits and called as Quantum-bits or Qbits

B |n general, a qubit state is a linear combination:

[ =al0) + A1), laf?+[8)7 =1

Classical

predicion
Vhat was Siver atoms

aclually observed /

Fumace

Inhomogeneous
‘magnetic field Stel’n-Gel’|aCh
experiment (1922), Figure Source: wikipedia
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Qubits in QC industry
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Pauli Matrices and Spin Operators

Spin-1/2 operators defined by Pauli matrices:

/01 (0 =i /1 0
=\10/) 7= \i o) %27 \o -1

Some useful properties: The corresponding spin operators are
m Commutation: [0}, 0j] = 2i€jj 0. given as: 5,,5,& S,
® Anticommutation: {o;, 0} = 20,1 B A h
Sc=-0x, S =0, S =0,

— J;'Oj:5UH+i€UkOk 2 5



Role of Hamiltonian: Energy

Taking Z as the conventional magnetic field direction, the energy of a dipole is

givenas E=—ji-B,

B The magnetic moment is given as:

which is dependent on the spin
vector S = (S, S,.S.).

m Thus, the above energy is expressed
by the operator H = —ji,S;.

Since the eigenvalues of the Hamiltonian
give the possible values of energies, we
have:

—’}/Boh
E,. =
* 2
—’}/Boh
E =
2

fi/ By gives the gyromagnetic ratio 7.



Role of Hamiltonian: Dynamics

The Hamiltonian also generates the dynamics within the system following the
Schrodinger Equation.

® let x, and y_ be the eigenstates
corresponding to E_.

" = x(t) = alt)xs + a(t)x-

BT

c(t) = ae™ ", op(t) = byeE-t/" .

|ao|? + | bo|? = 1, (by Normalization)

= ag = sin(a/2), by = cos(a/2), for ’
a parameter «. This dynamics now

describes the Larmour Precession. Figure: Larmour precession wrt (S), with
w = vBy



An example: Light-Matter Interactions

The spin Hamiltonian can be used to model a simple example of light-matter
interaction, describing the Rabi Oscillations.

Here, B = Bycos(Qrt)% + Bosin(Qrt)y

from the incident £M field, with ey(P
angular frequency Q.
== e
H=-ji-B Time (1)
H = w’(cos(QRt)SX + sin(QRt)Sy>
where W' = 7By Figure: Oscillating occupation probabilities

constituting a Rabi cycle



The Many-Body Hilbert Space

So far, we have a single spin Hamiltonian, interacting with an external field.
Taking several spins introduces spin-spin interactions, while expanding the Hilbert
space. Interactions imply variable-separation is not valid.

HMN =1y @ Hy. Hy = QN H;

Eg: For N =1, Eg: For N =2,
Basis = {|0),,]1),} Basis = {|00), ,[01),,[10),, |11),}
The basis vectors are given as: The basis vectors are given as:

basis = <(1)> , <(1)>
basis =

O O O =
O(;HO
OI—\:OO
= O O O



A Simple Many-Body Hamiltonian

Consider a 1D lattice with points labeled {1,2,....7,i+1,..N}.

Now, we may denote a spin operator S& as the operator S,, (o = x, y, z) acting
on the lattice site J.

= S =L ®L®..5%. ®Iy. This further leads to: [SF, SP] = idj€as, S

Now consider the example:
He s S5
(id)

This Hamiltonian describes the spin-spin interaction between nearest-neighbor
spins on our 1D lattice. This is the Heisenberg Model.



Interactions



Magnetic Properties via State
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m The nature of interactions tunes
the properties of the system, and

also affects the ground state of the . T T T T ] T T T A T
system.

® The ground state of the system is
free from any excitations, and c l T l T r T T T ‘ T
hence reflect the properties of the
system at large. l ) l SRR YENE

® The adjoining figure shows the D
ground state corresponding to the
observed macroscopic magnetic Figure: The ground states corresponding to
behavior. paramagnetic, ferromagnetic, antiferromagnetic

and ferrimagnetic systems



Origin of Interaction Strength

Pauli Exclusion Principle:

B Electrons are fermions; no two can occupy
the same quantum state simultaneously.

B The total two-electron wavefunction must
be antisymmetric:

wtot(la 2) = *\Utot(za 1)

B For parallel spins (symmetric spin part),
the spatial wavefunction must be
antisymmetric to preserve overall
antisymmetry.

B Antisymmetric spatial wavefunctions
reduce overlap between electrons.

Reduced Coulomb Repulsion:

B Coulomb energy:

U x <1>
rno

Greater overlap = larger repulsion.

Antisymmetric spatial wavefunctions =
reduced overlap = lower Coulomb energy.

This energy difference gives rise to the
exchange interaction.

J > 0 implies ferromagnetic and J < 0
implies antiferromagnetic ordering.



Ferromagnetic and Antiferromagnetic Ordering

J>0 Es>E; J<0 E;>Eg
Triplet ground state Singlet ground state

‘pS
r r
Anti-symmetric spatial state Symmetric spatial state
Ferromagnetic coupling Antiferromagnetic coupling

Figure: Interplay between Pauli exclusion and Coulomb repulsion leads to magnetic ordering



Direct and Indirect Exchange

m We have discussed about the nature of magnetism considering short range
(direct) exchange.

m However, magnetism also has long range order and that is accomplished via
indirect exchange, which requires the presence of a mediating element.

Examples for indirect exchange include:

1. Superexchange: Via nonmagnetic /\ /\
anion (e.g., 02_), often AFM via T eg — g
Goodenough—Kanamon rules. . Cig) S

2. RKKY Interaction: In metals,
mediated by conduction electrons;
oscillates between FM/AFM with

distance Figure: Indirect coupling via the

superexchange mechanism.



Spin-Orbit Coupling

B More physical features are added by the spin-orbit coupling effect, given by the term
Hsoe = &(r)L - S.
B SOC locks spin orientation to lattice directions (via L), breaking spin-rotational symmetry

Hsoc leads to Dzyaloshinskii-Moriya interaction, between
two spins S; and S, on a lattice bond ri5 with no

Collinear spins Canted spins
1 1 D=0 D=0
Inversion center.
™ oxygen ™
HDMI = D;J'(HSOC)S,' X Sj g‘ ’“O'”’—Q—'Sz
M=0

Dj; depends on Hs.c, adds non-collinear spin texture

resulting in net magnetization M # 0 in an otherwise Figure: Non-collinearity in spins
. . . under HDMI

collinear antiferromagnet (weak ferromagnetism).



Spin Configurations and Magnetic Ordering

® The FM and AFM order is
reflected in ground the ground
state at T ~ 0K.

B Upon increasing the temperature,
thermal fluctuations appear,

which destroy the magnetic order.

B This is phase transition, and the
specific temperature is called as
the Curie point T¢ (for FM) and
Neel point Ty (for AFM)

Susceptiibility

Paramagnetic

Ferromagnetic

Antiferromagnetic

Neel point Curie point ~ Temperature

Figure: Phase diagram for FM/AFM to
paramagnetic transition at T¢/ Ty



Classical vs Quantum



Classical Phase Transitions

H
@
m (lassical phase transitions are
driven by a competition between N
magnetic ordering and thermal = 2
fluctuations. *Fe;rrth;
® The simplest example is the 9s (b)

transition between ferromagnetic

and paramagnetic phases between

the Ising model:

H:JZ,'SI‘X ,-X+1+hXZ,.5,?<. m
m By the Landau paradigm the phase

of a system corresponds to the free

T<Tc

o Figure: (a) Ferromagnetic and Paramagnetic
€nergy minima. states (b) along for the corresponding minima
for the possible ferro states.



Quantum Versions of Phase Transition

m Contrary to classical phase
transitions which require an
element of thermal fluctuations,

® Quantum Phase Transitions occur
at zero kelvin where thermal
fluctuations are impossible.

® nstead such phase transitions

occur due to quantum fluctuations.

® Since they occur at zero
temperature limit, ground states
serve as an efficient discriminator.

T N ey
S naiid
domain wall le-Broglie waveler flipped spin
quasi-particles o quasi-particles
' particle /
|TTTTT~L~L~L¢¢~L$> \ spacing [5oooesoo)
e
\

hlJ
Figure: Phase structure with under quantum

phase transition, along with contrasting ground
states.

The above phase structure is for:

H= JZSXS+1+h ZSX+h Zsz



Entanglement in Quantum Systems

Entanglement between subsystems A and B
within the entire system defined by 1 is
given as:

Su(w) = (1 tro)
= 77(1 - trpzs)
n is defined such that S;(v) € [0, 1]

1

/)’] = m, d = mln(dA, dB)

Product state Entangled state

(O3 Cos) (Taavass)
(2= 2] =)

[¥)=1¥)a®|¥)g (V)= |¥Ia®|¥)g

. Gl

Figure: Pure and mixed partial states ?

2Choi et.al. Nature 528 77-83(2015)



Entanglement as a probe

m Entanglement within the ground
state serves as a metric for
classifying the phase of the system

®m The dependence on entanglement
with system size follows the
relation:

S(A/A) = adA — v

where OA represents the boundary
of the system, and v is a constant
called as topological quantum
entropy

Ref: Claeys at.al Phys. Rev. Research 4, 043212 (2022)

Figure: An example of the entanglement
being used as a probe for quantum phase
transition induced by measurements



Various spin models



1d spin models

M= gnoh S 5 = (b S+ 45/ Sl + 157 5)

h =magnetic field, J,, J,, J, are exchange interaction coefficients, L spins

m J,=0,J,=0,J, # 0 — Longitudinal Ising model (Exact solution, Ising
1925)
Jy =J, = J, = J — XXX Heisenberg model (Exact solution, Bethe 1931 )
Je # 4y, J; = 0 — XY model (Exact solution, Lieb, Shulz, Mattis 1961 )

Je #0,J,,J, = 0 — Transverse Ising model (Exact solution, similar to XY
model, Lieb, Shulz, Mattis 1961 )

Je = J, # J, = XXZ model (Exact solution, Orbach 1958 )
Je #J, # J, # 0 — XYZ model (Exact solution, Baxter 1972 )



2d spin model: Quantum Skyrmions

Hamiltonian
=3 "D, [S x S*_j] + 0> 5548 Y 55 +BY S
i<i g (i.4) Wid)) i

Next nearest
neighbour
antiferromagnetic

}

DMI interaetion

Nearest
neighbour
ferromagnetic

Non-colinearity of spins

Frustration—produce skyrmion
texture.

Zeeman term -
deformation parameter.

Ref: Vipin V. et.al., Phys. Rev. B 107, L100419 (2023)

Figure: Lattice structure for given
hamiltonian and skyrmion texture



VBS Solids

m Valence bond solid (VBS) states
are quantum ground states with
short-range singlet pairing between

neighboring spins.
m V/BS order breaks lattice
translational symmetry, leading to

dimerized or more complex bond

Figure: An example of the VBS order in
patterns.

Resonating valence band spin liquid (b)
®m The AKLT model is a well-known columnar VBS.

example where the exact VBS
ground state can be written
analytically.

Ref: Sandvik, AIP Conf. Proc. 1297, 135 (2010)



Model for Quantum Phase Transition

VBS States also show Quantum Phase Transition

H:JZ§;*§}+JI Z S‘,‘*S‘]

(ij) {i5)) dimer

Dimer phase i Plaquette phase
=X N

T 6 HE
s7 !

Néel phase

- - s e

JIT

- s 4 > 4 1
0 0.675(2) 0.765(15)

- — e -

Fig.A.Atomic structure of the SrCu,(BO,), plane. Pairs of Cu form spin  Fig. The phase diagram of the Shastry-Sutherland model. The arrows

dimers. Each unit cell contains 4 B ions in the right panel illustrate the Neel order. In between the
B. The PS phase in the square lattice with J and J’ bonds. well-established dimer and Neel phase we find a phase with plaquette
C. The AFM phase that breaks the O(3) symmetry long-range order

Ref: Cui et al. Proximate deconfined quantum critical point in SrCu2(B03)2, Science 380 ,1179-1184(2023)



Field Description and the Role of Numerics



Mapping Spins to Hard-Core Bosons
= Spin-1 operators, S5;" = 5 — S/

St=ImdL ST =101 5;2:%(”) (TI=14) (H)

Spin State

o O

St bl, ST by, ST=blb— =

2 @_}

®m Mapped to hard-core boson operators:

= Hard-core constraint: (b/)> =0 — no
double occupancy.

m Useful for reformulating spin models in
bosonic language.

Boson State

E})ccu pied
|:| empty



Jordan-Wigner Transformation: Hard Bosons to Fermions
® Hard-core bosons obey:

{bi, b} =05, (b])*=0

® However, they commute on different sites: [b;, bj] = 0, unlike fermions.
® Jordan-Wigner transformation maps hard bosons to fermions:

k<j k<j

where Z, = 1 — 2c£ck
® The string ensures correct anticommutation: {¢;, ¢ J} =0j

bj =T1lkej 2 -

| !
ONONONO




Bogoliubov Transformation: Fermions to Quasiparticles

B Consider a quadratic fermionic Hamiltonian:

H= Z {ekczck + Akc]:cik + Aic_kck]
P

B This describes pairing between fermions at @

opposite momenta. t
Yk = UkCk + VkC_,

B Bogoliubov transformation defines new fermionic
quasiparticles:

_ 1 _ i
Yk = UkCik + ViC_ ), Y—k = UkCj — VkC

B The coefficients ug, vk are chosen to diagonalize
the Hamiltonian:

1
H = ZEk (’y;:’yk — 2)
k

Mbeng et.al. SciPost Phys. Lect. Notes 82 (2024)



Non-integrable Models: Computational Methods

® Non-integrable models lack an extensive set of conserved quantities.

m Cannot be mapped to independent single-particle modes.

Many-body interactions dominate dynamics and eigenstates.

Require full many-body Hilbert space treatment.
Exhibit quantum chaos, thermalization, and eigenstate complexity.

Hence, computational methods are required, but they have exponentially
scaling computational requirements.

Number of sites Number of states = Hamiltonian size in memory

s 16 2048 B
9 512 2MB
16 65536 34 GB
25 33554432 9PB

36 6.872e10 40 ZB



lterative Diagonalization: Lanczos Method

Generate a random initial vector: v
normalise initial vectorv = v / |‘L'||m-

]
m |terative method for flndlng | Solve the matrix-‘;ectormapping
. w=.aAav
extremal eigenvalues of large sparse |
matrices. Nommali
. o . . ormalise w Set new ¢
m Builds a tridiagonal matrix in a [ w=w/|ul. ‘ equal tow
Krylov subspace. ¥
m Efficient for computing ground [ Upda[eifg"cz?;fCI{:fifa‘iﬂ" ’
= —Je
H [terate
in many- ntum
states any-body quantu i o
systems. Check error bound
||_f|||ery| <€l Error bound

Error bound not satisfied
.



Block-Diagonal Hamiltonians and Symmetry

Time evolution of an observable:

d A i A
2(0(1) = 5(1M, O]

Hy

If [H, O] = 0, then (O(t)) is conserved over

. H,
time.

Such symmetries imply the Hilbert space
splits into invariant subspaces. Hs

The Hamiltonian becomes block-diagonal in
the basis of simultaneous eigenstates of Off-diagonal — 0
commuting operators, greatly reducing

computational cost.

: Jung et.al. Journal of the Korean Physical Society, Volume 76, pages 670-683, (2020)



Quantum Circuits



Quantum Circuits

B Quantum circuits manipulate qubit states
via unitary gates.

B A single-qubit gate is represented by a
2 X 2 unitary matrix.

B Any single-qubit unitary gate corresponds
to a rotation on the Bloch sphere.

B General rotation:

where 7 is the rotation axis, 0 the angle, |1;
and & = (ox,0y,0;).

B Circuit depth and structure determine the Figure: The block sphere representation of
entanglement and computational qubits. Quantum gates are rotation
complexity. operations on the bloch sphere.



Heisenberg Evolution as Circuit

B Trotterization approximates time evolution by sequentially applying local
terms: e~ Mt ~ [T e it

m Each local term hj; (e.g., S; - 5?) is implemented using rotation and
entangling gates.

Figure: The circuit for N =5, and t =3



Implementation Results

— 1.0
—a— Trotter W
IBM 0.5

—m - [BM constrained

— ED -‘.r‘.
—0.51 —e— Trotter =0.5 —0.5
IBM
1.0 —®& - IBM constrained 10 10
0 1 2 0 1 2 0.0 2.5 5.0 7.5 10.0
Jt Jt Jt

Figure: Results for a global quench for TFIM from a domain wall initial state. (a, b)
The local magnetization of the fourth and sixth spins of the chain with N =6, and (¢)
is for the sixth spin for longer times

Ref: Smith et.al. npj Quantum Information Volume 5, Article number: 106 (2019)



Dynamical Aspects



Quantum Chaotic Models

Setting: Dynamics generated by a brickwall circuit made up by repeating units
of U € DU(q), for g = 2,3.

Motivation: A class of circuit which allows for maximally chaotic behaviour in a
minimal model.

We define the circuit for a single time step as The remaining parameter is the
(with PBC): intial state, denoted as:
Z/{ = <®i€Zeven Ui’i+1' ®jezodd Uj’j+1 > ]_ q_l .. N

_ _ |0 initial = T/z( Z mij|U>) )
This maybe graphically denoted as: q ij=0

‘winit>: 12345678 9101112

0123 456 7 8 9101112 v F & % ¥ W



Random Quantum Circuits

® Random quantum circuits consist of layers
of randomly chosen local unitary gates.

® They break symmetries and avoid
conservation laws, mimicking non-integrable
dynamics.

m Such circuits exhibit fast entanglement
growth and thermalization-like behavior.

m Useful for studying quantum chaos,
scrambling, and eigenstate thermalization
hypothesis (ETH).

[%o) M) [41)
|%0) )
|%o) [40)
[%o) |41)
[%o) M) )
2 %)
2 M) )
%0) [41)
Time

Figure: A schematic random
quantum circuit, with each gate
corresponding to randomly
selected parameters



Conclusions



Recap

Spins: A Primer — Spin-1/2 systems as minimal models for quantum
two-level systems (qubits).

Interactions — Magnetic properties arise from spin-spin interactions,
exchange mechanisms, and symmetry considerations.

Classical vs Quantum — Contrasting phase transitions, with quantum
fluctuations dominating at T = 0.

Some Examples — Realizations like Floquet models, skyrmions, and VBS
illustrate emergent phenomena.

Field Description and Numerics — Reformulating spin models via
mappings enables computational approaches.

Quantum Circuits — Time evolution and dynamics encoded using unitary
gate-based circuits.

Dynamical Aspects — Random and chaotic circuits as minimal models for
entanglement spreading and ETH.



Summary

m Spin systems offer a foundational framework to study collective quantum
phenomena.

m Many-body models reveal rich behavior — from magnetism and phase
transitions to entanglement and chaos.

® Quantum circuits bridge the gap between theoretical models and physical
implementations in quantum computing.

® Analytical tools and numerical methods together help explore non-integrable
dynamics beyond solvable regimes.

® The study of quantum dynamics and entanglement is central to modern
developments in condensed matter and quantum information science.
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