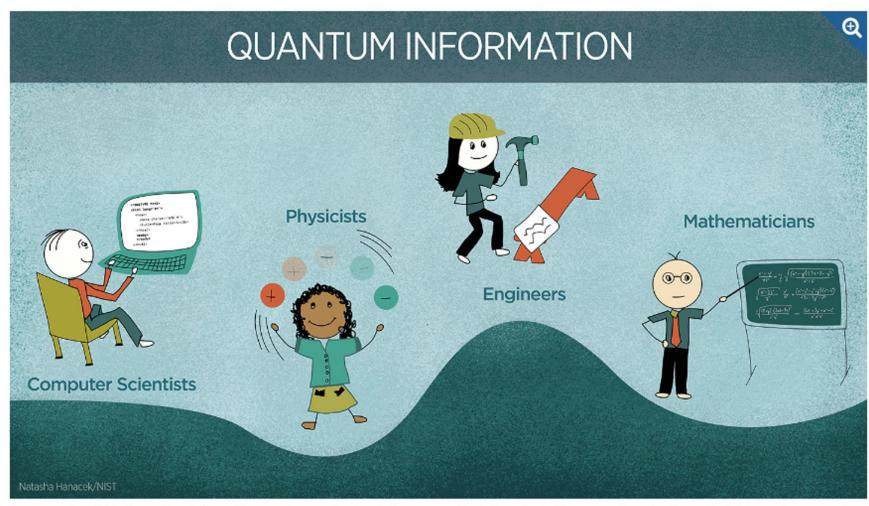


Introduction to Quantum Gate

Dr. Upendra Kumar Assistant Professor Advanced Functional Materials Laboratory Department of Applied Science IIIT Allahabad Prayagraj-211015, Uttar Pradesh



The emerging field of quantum information requires professionals from many disciplines, including computer scientists, physicists, engineers, and mathematicians.

Credit: N. Hanacek/NIST

4

Motivation: Factorization

- An important problem in computing is finding the prime factorization of an integer.
- Using classical algorithms, a number N of size $n = \log_2(N)$ takes superpolynomial time. $2^{\sqrt{n}}$ time is about the best we can get.

Motivation: Factorization

- For example, on a particular personal computer, it may take four hours to factor a number with 78 digits (n = 256).
- On the same computer, a 174 digit number (n = 576, which is the record) would take 43 days.
- A 617 digit number (n = 2048, current size recommended for RSA encryption), would take 300,000 years.

Motivation: Factorization

- Such superpolynomial growth is characteristic of many algorithms in classical computing.
- However: Quantum Computing could provide a miraculous decrease in time.
- A quantum algorithm reduces the integer factorization problem to polynomial time (n^3).
- Then, if n = 256 number takes four hours, n = 2048 will take 85 days.

Outline

- Review of Classical Computing
- Qubits and Quantum Operations
- Quantum Algorithms
- Physical Implementations
- Future Developments

Outline

Review of Classical Computing

- Data Representation
- Operations
- Qubits and Quantum Operations
- Quantum Algorithms
- Physical Implementations
- Future Developments

Classical Data Representation

- The basic unit in classical data is a binary digit, called a bit, that can take on the value 0 or 1.
- In classical computing, we represent a datum by a string of bits.
- The letter 'A' may be written 0100 0001
- The number 137 can be written 1000 1001

Classical Operations

- All operations in classical computing are based on logic gates.
- For example, the logical AND gate takes in two bits and returns 1 if and only if both inputs are 1.

AND		
Input 1	Input B	Output
0	0	0
0	1	0
1	0	0
1	1	1

OR		
Input 1	Input B	Output
0	0	0
0	1	1
1	0	1
1	1	1

Classical Algorithm

- We define a Classical Algorithm to be any sequence of such classical operations (usually to do something useful).
- A classical computer is any device that can implement a classical algorithm.

Classical Computing

- Although modern classical computers depend on quantum mechanics, the algorithms that they implement do not.
- We could, in principle, design a classical computer that does not depend on quantum mechanics.

Outline

- Review of Classical Computing
- Qubits and Quantum Operations
 - Qubits as Two-State Systems
 - Quantum Gates
 - Quantum Registers
 - Entanglement
- Quantum Algorithms
- Physical Implementations
- Future Developments

Qubits

A Quantum Bit
 (Qubit) is a two-level
 quantum system.

|1>

- We can label the states |0> and |1>.
- In principle, this could be any two-level system.

Qubits

Unlike a classical bit, which is definitely in either state, the state of a Qubit is in general a mix of |0> and |1>.

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle$$

We assume a normalized state:

$$|c_0|^2 + |c_1|^2 = 1$$

Qubits

 For convenience, we will use the matrix representation

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- A Quantum Logic Gate is an operation that we perform on one or more Qubits that yields another set of Qubits.
- We can represent them as linear operators in the Hilbert space of the system.

4

Quantum NOT Gate

- As in classical computing, the NOT gate returns a 0 if the input is 1 and a 1 if the input is 0.
- The matrix representation is

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Other Quantum Gates

Other gates include the Hadamard-Walsh matrix:

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

And Phase Flip operation:

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\varphi} \end{pmatrix}$$

4

Multiple Qubits

- Any useful classical computer has more than one bit. Likewise, a Quantum Computer will probably consist of multiple qubits.
- A system of *n* Qubits is called a Quantum Register of length *n*.
- To represent that Qubit 1 has value b_1 , Qubit 2 has value b_2 , etc., we will use the notation:

$$|b_1\rangle_1|b_2\rangle_2\cdots|b_n\rangle_n$$

4

Multiple Qubits

- For n Qubits, the vector representing the state is a 2n column vector.
- The operations are then 2n x 2n matrices.
- For n = 2, we use the representations

$$|0\rangle_{1}|0\rangle_{2} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} |0\rangle_{1}|1\rangle_{2} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} |1\rangle_{1}|0\rangle_{2} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} |1\rangle_{1}|1\rangle_{2} = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

Quantum CNOT Gate

- An important Quantum Gate for n = 2 is the conditional not gate.
- The conditional not gate flips the second bit if and only if the first bit is on.

(1)	0	0	
0	1	0	0
0	0	0	1
0	0	1	0

Input		Output	
Qubit 1	Qubit 2	Qubit 1	Qubit 2
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

Brief Overview Gates

Gate	Equation	Matrix	Transform	Notation
Identity (I)	$I = 0\rangle\langle 0 + 1\rangle\langle 1 $	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$I \mid 0 \rangle = \mid 0 \rangle$ $I \mid 1 \rangle = \mid 1 \rangle$	<u> </u>
Pauli-X (X or NOT)	$X = 0\rangle\langle 1 + 1\rangle\langle 0 $	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$X \mid 0 \rangle = \mid 1 \rangle$ $X \mid 1 \rangle = \mid 0 \rangle$	<u>X</u>
Hadamard (<i>H</i>)	$\boldsymbol{H} = \frac{ 0\rangle + 1\rangle}{\sqrt{2}} \langle 0 + \frac{ 0\rangle - 1\rangle}{\sqrt{2}} \langle 1 $	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$H \mid 0\rangle = \frac{1}{\sqrt{2}} (\mid 0\rangle + \mid 1\rangle)$ $H \mid 1\rangle = \frac{1}{\sqrt{2}} (\mid 0\rangle - \mid 1\rangle)$	— <u>H</u> —
Controlled- NOT (CNOT)	$\mathbf{CNOT} = 0 \langle 0 \otimes \mathbf{I} + 1 \rangle \langle 1 \otimes \mathbf{X}$	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} $	$\mathbf{CNOT} 00\rangle = 00\rangle$ $\mathbf{CNOT} 01\rangle = 01\rangle$ $\mathbf{CNOT} 10\rangle = 11\rangle$ $\mathbf{CNOT} 11\rangle = 10\rangle$	
Toffoli (<i>T</i> or CCNOT)	$\mathbf{T} = 0\rangle\langle 0 \otimes \mathbf{I} \otimes \mathbf{I}$ $+ 1\rangle\langle 1 \otimes \mathbf{CNOT}$	$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$	$T 000\rangle = 000\rangle, T 001\rangle = 001\rangle$ $T 010\rangle = 010\rangle, T 011\rangle = 011\rangle$ $T 100\rangle = 100\rangle, T 101\rangle = 101\rangle$ $T 110\rangle = 111\rangle, T 111\rangle = 110\rangle$	——————————————————————————————————————

Reversibility and No-Cloning

- In Quantum Computing, we use unitary operations ($U^*U = 1$).
- This ensures that all of the operations that we perform are reversible.
- This fact is important, because there is no way to perfectly copy a state in Quantum Computing (No-Cloning Theorem).

4

No-Cloning Theorem

That is, the No-Cloning Theorem says that there is no linear operation that copy an arbitrary state to one of the basis states:

$$|\psi\rangle|e_i\rangle \rightarrow |\psi\rangle|\psi\rangle$$

 We can get around this if we are only interested in copying basis vectors, though.

Entanglement

- In Quantum Mechanics, it sometimes occurs that a measurement of one particle will effect the state of another particle, even though classically there is no direct interaction. (This is a controversial interpretation).
- When this happens, the state of the two particles is said to be entangled.

Entanglement: Formalism

More formally, a two-particle state is entangled if it cannot be written as a product of two one-particle states.

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle_1 |0\rangle_2 + |1\rangle_1 |1\rangle_2$$

 If a state is not entangled, it is decomposable.

$$\begin{aligned} |\psi\rangle &= \frac{1}{2} \left(|0\rangle_1 |0\rangle_2 + |1\rangle_1 |0\rangle_2 + |0\rangle_1 |1\rangle_2 + |1\rangle_1 |1\rangle_2 \right) \\ &= \frac{1}{\sqrt{2}} \left(|0\rangle_1 + |1\rangle_1 \right) \frac{1}{\sqrt{2}} \left(|0\rangle_2 + |1\rangle_2 \right) \end{aligned}$$

Entanglement: Example

- The state of two spinors is prepared such that the z-component of the spin is zero.
- If we measure m = +1/2 for one particle, then the other particle must have m = -1/2.
- The measurement performed on one particle resulted in the collapse of the wavefunction of the other particle.

Outline

- Review of Classical Computing
- Qubits and Quantum Operations
- Quantum Algorithms
 - Definitions
 - Universal Gate Sets
 - Example: Quantum Teleportation
- Physical Implementations
- Future Developments

Definitions

- A Quantum Algorithm is any algorithm that requires Quantum Mechanics to implement.
- A Quantum Computer is any device that can implement a Quantum Algorithm.

Universal Gate Sets

- It would be convenient if there was a small set of operations from which all other operations could be produced.
- That is, a set of operators {U₁,...,U_n} such that any other operator W could be written W = U_iU_j...U_k.
- Such a set of operators in the context of computation is called a universal gate set.

Classical NAND Gate

 One universal set for Classical Computation consists of only the NAND gate which returns 0 only if the two inputs are 1.

Input B

Output

Input 1

NOT(P) = NAND(P, P)

AND(P,Q) = NAND(NAND(P,Q), NAND(P,Q))

OR(P,Q) = NAND(NAND(P,P), NAND(Q,Q))

Quantum Universal Gate Set

- There are a few universal sets in Quantum Computing.
- Two convenient sets:
 - CNOT and single Qubit Gates
 - CNOT, Hadamard-Walsh, and Phase Flips
- Having such a set could greatly simplify implementation and design of Quantum Algorithms.

Outline

- Review of Classical Computing
- Qubits and Quantum Operations
- Quantum Algorithms
- Physical Implementations
 - Requirements
 - NMR Implementation
- Future Developments

Physical Implementation

- Any physical implementation of a quantum computer must have the following properties to be practical(DiVincenzo)
 - The number of Qubits can be increased
 - Qubits can be arbitrarily initialized
 - A Universal Gate Set must exist
 - Qubits can be easily read
 - Decoherence time is relatively small

- There are other possible ways to produce quantum computers:
 - Quantum dots
 - Superconductors
 - Lasers acting on ion traps
 - Molecular magnetic computers

Outline

- Review of Classical Computing
- Qubits and Quantum Operations
- Quantum Algorithms
- Physical Implementations
- Future Developments

Future Prospects

- Currently, research in Quantum
 Computing is more based on proof-of-principle rather than research into practical applications.
- The infancy of the science is a significant inhibitor. In the future, decoherence may be a serious issue.

- Although many Quantum Algorithms seem to threaten classical computing (such as RSAencryption), Classical Computers will be significantly larger than Quantum Computers for the foreseeable future.
- Kurzweil, for example, suggests that practical quantum computing will be achieved at approximately the same time humanity achieves immortality (before 2099).

- Quantum Computing could provide a radical change in the way computation is performed.
- The unit of information in Quantum Computing is the Qubit, which is a two statesystem. Basic operations are unitary operators on the Hilbert space of this system.
- The advantages of Quantum Computing lie in the aspects of Quantum Mechanics that are peculiar to it, most notably entanglement.
- Practical Quantum Computers are a significant ways off.

References

General

- Hirvensalo, M. (2004) *Quantum Computing*. Springer-Verlag [Good introduction to the material. Much of the material in the presentation in elaborated this text.]
- Lo, H., Popescue, S., and Spiller, T., eds. (1998) *Introduction to Quantum Computation and Information*. World Scientific.

Shor's Algorithm

Shor, P. (1994) Algorithms for Quantum Computation: Discrete Logarithms and Factoring. *Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science*, Santa Fe, NM, Nov. 20-22, 1994. (Available electronically at quant-ph/9508027) [Shor's original paper describing the quantum algorithm used to factor integers].

Physical Implementation

- Boschi, D., et al. (1998). Experimental Realization of Teleporting of an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen channels. *Phys. Rev. Lett.*, **80**, 1121-1125.
- Bouwmeester, D., et al. (1997). Experimental Quantum Teleportation. *Nature*, **390**, 575-579.
- DiVincenzo, D. (2000) The Physical Implementation of Quantum Computation. (Prepared for Fortschritte der Physik special issue, *Experimental Proposals for Quantum Computation*, eds. H.-K. Lo and S. Braunstein. Available electronically at quant-ph/0002077)
- Vandersypen, L. M. K., et al. (2001) Experimental Realization of Shor's Quantum Factoring Algorithm Using Nuclear Magnetic Resonance. *Nature*, **414**, 883-887.

References

Lego Logic Gates

The Goldfish Online, "LEGO Logic Gates" http://goldfish.ikaruga.co.uk/logic.html. Accessed April 18, 2005.

Other

Foot, C. J. (2005). *Atomic Physics*. Oxford University Press (Paperback). [Provides a brief perspective on Quantum Computing that is relevant to a student of atomic physics]

Kurzweil, Ray. (2000). *The Age of Spiritual Machines: When Computers Exceed Human Intelligence.* Penguin Books (Paperback) [Very little about Quantum Computing *per se*, but provides an interesting comparison of the future prospects of the field in comparison to other forms of computing].

Thank you

Any Questions

& Suggestions are Welcome

August 19, 2025 42