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QUANTUM INFORMATION

Mathematicians

The emerging field of quantum information requires professionals from many disciplines, including computer scientists, physicists, engineers, and
mathematicians.

Credit: N. Hanacek/NIST



i Motivation: Factorization

= An important problem in computing is
finding the prime factorization of an
integer.

= Using classical algorithms, a number NV
of size n = log,(N) takes super-
polynomial time. 2" time is about the
best we can get.



i Motivation: Factorization

= For example, on a particular personal
computer, it may take four hours to factor a
number with 78 digits (7 = 256).

= On the same computer, a 174 digit number (7
= 576, which is the record) would take 43
days.

= A 617 digit number (7 = 2048, current size

recommended for RSA encryption), would
take 300,000 years.



i Motivation: Factorization

= Such superpolynomial growth is characteristic
of many algorithms in classical computing.

= However: Quantum Computing could provide
a miraculous decrease in time.

= A quantum algorithm reduces the integer
factorization problem to polynomial time ( n°).

= Then, if n= 256 number takes four hours,
n = 2048 will take 85 days.
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i Classical Data Representation

= The basic unit in classical data is a
binary digit, called a bit, that can take
on the value 0 or 1.

= In classical computing, we represent a
datum by a string of bits.

= The letter ‘A" may be written 0100 0001

= The number 137 can be written
1000 1001



i Classical Operations

AND

= All operations in input1 Input B
classical computing
are based on logic
gates. OR

Input 1 Input B
= For example, the
logical AND gate
takes in two bits and
returns 1 if and only
if both inputs are 1.
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i Classical Algorithm

= We define a Classical Algorithm to be
any sequence of such classical
operations (usually to do something
useful).

= A classical computer is any device that
can implement a classical algorithm.



i Classical Computing

= Although modern classical computers
depend on quantum mechanics, the
algorithms that they implement do not.

= We could, in principle, design a classical
computer that does not depend on
quantum mechanics.
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i Qubits

= A Quantum Bit
(Qubit) is a two-level
quantum system.

= We can label the
states |0> and |1>.

= In principle, this
could be any two-
level system.

|0>



i Qubits

= Unlike a classical bit, which is definitely
in either state, the state of a Qubit is in
general a mix of |0> and [1>.

W) =Co|0)+C,|1)

= We assume a normalized state:

cof +e =1



i Qubits

= For convenience, we will use the matrix
representation



i Quantum Gate

= A Quantum Logic Gate is an operation
that we perform on one or more Qubits
that yields another set of Qubits.

= We can represent them as linear
operators in the Hilbert space of the
system.



i Quantum NOT Gate

= As in classical computing, the NOT gate
returns a O if the inputis 1 and a 1 if
the input is 0.

= The matrix representation is
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i Other Quantum Gates

= Other gates include the Hadamard-
Walsh matrix:
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= And Phase Flip operation:
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i Multiple Qubits

= Any useful classical computer has more than
one bit. Likewise, a Quantum Computer will
probably consist of multiple qubits.

= A system of 7 Qubits is called a Quantum
Register of length n.

= To represent that Qubit 1 has value b,, Qubit
2 has value b, etc., we will use the notation:

B),1b2), - {by),



i Multiple Qubits

= For n Qubits, the vector representing
the state is a Zn column vector.

= The operations are then 2nx 2n
matrices.

= For n = 2, we use the representations
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i Quantum CNOT Gate

= An important Quantum Gate for n= 2 is
the conditional not gate.

= The conditional not gate flips the
second bit if and only if the first bit is

on.
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Brief Overview Gates

Gate Equation Matrix Transform Notation
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i Reversibility and No-Cloning

= In Quantum Computing, we use unitary
operations (U = 1).

= This ensures that all of the operations
that we perform are reversible.

= This fact is important, because there is
no way to perfectly copy a state in
Quantum Computing (No-Cloning
Theorem).



i No-Cloning Theorem

= That is, the No-Cloning Theorem says
that there is no linear operation that
copy an arbitrary state to one of the
basis states:

wle) = v)ly)
= We can get around this if we are only
interested in copying basis vectors,
though.



i Entanglement

= In Quantum Mechanics, it sometimes
occurs that a measurement of one
particle will effect the state of another

particle, even though classically there is
no direct interaction. (Thisis a
controversial interpretation).

= When this happens, the state of the two
particles is said to be entangled.



i Entanglement: Formalism

= More formally, a two-particle state is
entangled if it cannot be written as a

product of two one-particle states.

)= (0))0), +[1), 18,

= If a state is not entangled, it is
decomposable.
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i Entanglement: Example

= [he state of two spinors is prepared such that
the ~component of the spin is zero.

= If we measure m = +1/2 for one particle,
then the other particle must have m =-1/2.

= The measurement performed on one particle
resulted in the collapse of the wavefunction
of the other particle.
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i Definitions

= A Quantum Algorithm is any algorithm
that requires Quantum Mechanics to
implement.

= A Quantum Computer is any device that
can implement a Quantum Algorithm.



i Universal Gate Sets

= It would be convenient if there was a small
set of operations from which all other
operations could be produced.

= That is, a set of operators {U;,...,U,} such
that any other operator W could be written W
— U|UJUk.

= Such a set of operators in the context of
computation is called a universal gate set.



i Classical NAND Gate

= One universal set for Classical
Computation consists of only the NAND
gate which returns 0 only if the two
inputs are 1.

NAND
Input 1 Input B Output

==
o r o
O R kP

NOT (P) = NAND (P, P) AR
AND (P, Q) = NAND (NAND (P, Q), NAND (P, Q))
OR(P,Q) = NAND (NAND (P, P), NAND(Q, Q))



i Quantum Universal Gate Set

= There are a few universal sets in
Quantum Computing.

= [WO convenient sets:

. CNOT and single Qubit Gates
. CNOT, Hadamard-Walsh, and Phase Flips

= Having such a set could greatly simplify
implementation and design of Quantum
Algorithms.
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i Physical Implementation

= Any physical implementation of a
quantum computer must have the
following properties to be
practical(DiVincenzo)

. The number of Qubits can be increased
. Qubits can be arbitrarily initialized

. A Universal Gate Set must exist

. Qubits can be easily read

. Decoherence time is relatively small



i Other Implementations

= There are other possible ways to
produce quantum computers:

Quantum dots
. Superconductors
. Lasers acting on ion traps
. Molecular magnetic computers
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i Future Prospects

= Currently, research in Quantum
Computing is more based on proof-of-
principle rather than research into
practical applications.

= The infancy of the science is a
significant inhibitor. In the future,
decoherence may be a serious issue.



i Future Prospects

= Although many Quantum Algorithms seem to
threaten classical computing (such as RSA-
encryption), Classical Computers will be
significantly larger than Quantum Computers
for the foreseeable future.

= Kurzweil, for example, suggests that practical
quantum computing will be achieved at
approximately the same time humanity
achieves immortality (before 2099).



i Concluding Remarks

= Quantum Computing could provide a radical
change in the way computation is performed.

= The unit of information in Quantum
Computing is the Qubit, which is a two state-
system. Basic operations are unitary
operators on the Hilbert space of this system.

= The advantages of Quantum Computing lie in
the aspects of Quantum Mechanics that are
peculiar to it, most notably entanglement.

= Practical Quantum Computers are a
significant ways off.
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