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Motivation: Factorization

◼ An important problem in computing is 
finding the prime factorization of an 
integer.

◼ Using classical algorithms, a number N
of size n = log2(N) takes super-
polynomial time.      time is about the 
best we can get.
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Motivation: Factorization

◼ For example, on a particular personal 
computer, it may take four hours to factor a 
number with 78 digits (n = 256).

◼ On the same computer, a 174 digit number (n
= 576, which is the record) would take 43 
days.

◼ A 617 digit number (n = 2048, current size 
recommended for RSA encryption), would 
take 300,000 years.



Motivation: Factorization

◼ Such superpolynomial growth is characteristic 
of many algorithms in classical computing.

◼ However: Quantum Computing could provide 
a miraculous decrease in time.

◼ A quantum algorithm reduces the integer 
factorization problem to polynomial time (   ).

◼ Then, if n = 256 number takes four hours,    
n = 2048 will take 85 days.
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Classical Data Representation

◼ The basic unit in classical data is a 
binary digit, called a bit, that can take 
on the value 0 or 1.

◼ In classical computing, we represent a 
datum by a string of bits.

◼ The letter ‘A’ may be written 0100 0001

◼ The number 137 can be written      
1000 1001



Classical Operations

◼ All operations in 
classical computing 
are based on logic 
gates.

◼ For example, the 
logical AND gate 
takes in two bits and 
returns 1 if and only 
if both inputs are 1.

AND

Input 1 Input B Output

0 0 0

0 1 0

1 0 0

1 1 1

OR

Input 1 Input B Output

0 0 0

0 1 1

1 0 1

1 1 1



Classical Algorithm

◼ We define a Classical Algorithm to be 
any sequence of such classical 
operations (usually to do something 
useful).

◼ A classical computer is any device that 
can implement a classical algorithm.



Classical Computing

◼ Although modern classical computers 
depend on quantum mechanics, the 
algorithms that they implement do not.

◼ We could, in principle, design a classical 
computer that does not depend on 
quantum mechanics.
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Qubits

◼ A Quantum Bit 
(Qubit) is a two-level 
quantum system.

◼ We can label the 
states |0> and |1>.

◼ In principle, this 
could be any two-
level system.

|1>

|0>



Qubits

◼ Unlike a classical bit, which is definitely 
in either state, the state of a Qubit is in 
general a mix of |0> and |1>.                                                           

◼ We assume a normalized state:
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Qubits

◼ For convenience, we will use the matrix 
representation
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Quantum Gate

◼ A Quantum Logic Gate is an operation 
that we perform on one or more Qubits 
that yields another set of Qubits.

◼ We can represent them as linear 
operators in the Hilbert space of the 
system.



Quantum NOT Gate

◼ As in classical computing, the NOT gate 
returns a 0 if the input is 1 and a 1 if 
the input is 0.

◼ The matrix representation is
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Other Quantum Gates

◼ Other gates include the Hadamard-
Walsh matrix:

◼ And Phase Flip operation:
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Multiple Qubits

◼ Any useful classical computer has more than 
one bit.  Likewise, a Quantum Computer will 
probably consist of multiple qubits.

◼ A system of n Qubits is called a Quantum 
Register of length n.

◼ To represent that Qubit 1 has value b1, Qubit 
2 has value b2, etc., we will use the notation:
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Multiple Qubits

◼ For n Qubits, the vector representing 
the state is a 2n column vector.

◼ The operations are then 2n x 2n
matrices.

◼ For n = 2, we use the representations
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Quantum CNOT Gate

◼ An important Quantum Gate for n = 2 is 
the conditional not gate.

◼ The conditional not gate flips the 
second bit if and only if the first bit is 
on.

Input Output

Qubit 1 Qubit 2 Qubit 1 Qubit 2

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0
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Brief Overview Gates



Reversibility and No-Cloning

◼ In Quantum Computing, we use unitary 
operations (U*U = 1).

◼ This ensures that all of the operations 
that we perform are reversible.

◼ This fact is important, because there is 
no way to perfectly copy a state in 
Quantum Computing (No-Cloning 
Theorem).



No-Cloning Theorem

◼ That is, the No-Cloning Theorem says 
that there is no linear operation that 
copy an arbitrary state to one of the 
basis states:

◼ We can get around this if we are only 
interested in copying basis vectors, 
though.
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Entanglement

◼ In Quantum Mechanics, it sometimes 
occurs that a measurement of one 
particle will effect the state of another 
particle, even though classically there is 
no direct interaction.  (This is a 
controversial interpretation).

◼ When this happens, the state of the two 
particles is said to be entangled.



Entanglement: Formalism

◼ More formally, a two-particle state is 
entangled if it cannot be written as a 
product of two one-particle states.

◼ If a state is not entangled, it is 
decomposable.
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Entanglement: Example

◼ The state of two spinors is prepared such that 
the z-component of the spin is zero.

◼ If we measure m = +1/2 for one particle, 
then the other particle must have m =-1/2.

◼ The measurement performed on one particle 
resulted in the collapse of the wavefunction 
of the other particle.
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Definitions

◼ A Quantum Algorithm is any algorithm 
that requires Quantum Mechanics to 
implement.

◼ A Quantum Computer is any device that 
can implement a Quantum Algorithm.



Universal Gate Sets

◼ It would be convenient if there was a small 
set of operations from which all other 
operations could be produced.

◼ That is, a set of operators {U1,…,Un} such 
that any other operator W could be written W 
= UiUj…Uk.

◼ Such a set of operators in the context of 
computation is called a universal gate set.



Classical NAND Gate

◼ One universal set for Classical 
Computation consists of only the NAND 
gate which returns 0 only if the two 
inputs are 1.

NAND

Input 1 Input B Output

0 0 1

0 1 1

1 0 1

1 1 0
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Quantum Universal Gate Set

◼ There are a few universal sets in 
Quantum Computing.

◼ Two convenient sets:
• CNOT and single Qubit Gates

• CNOT, Hadamard-Walsh, and Phase Flips

◼ Having such a set could greatly simplify 
implementation and design of Quantum 
Algorithms.
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Physical Implementation

◼ Any physical implementation of a 
quantum computer must have the 
following properties to be 
practical(DiVincenzo)

• The number of Qubits can be increased

• Qubits can be arbitrarily initialized

• A Universal Gate Set must exist

• Qubits can be easily read

• Decoherence time is relatively small



Other Implementations

◼ There are other possible ways to 
produce quantum computers:

• Quantum dots

• Superconductors

• Lasers acting on ion traps

• Molecular magnetic computers
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Future Prospects

◼ Currently, research in Quantum 
Computing is more based on proof-of-
principle rather than research into 
practical applications.

◼ The infancy of the science is a 
significant inhibitor.  In the future, 
decoherence may be a serious issue.



Future Prospects

◼ Although many Quantum Algorithms seem to 
threaten classical computing (such as RSA-
encryption), Classical Computers will be 
significantly larger than Quantum Computers 
for the foreseeable future.

◼ Kurzweil, for example, suggests that practical 
quantum computing will be achieved at 
approximately the same time humanity 
achieves immortality (before 2099).



Concluding Remarks

◼ Quantum Computing could provide a radical 
change in the way computation is performed.

◼ The unit of information in Quantum 
Computing is the Qubit, which is a two state-
system.  Basic operations are unitary 
operators on the Hilbert space of this system.

◼ The advantages of Quantum Computing lie in 
the aspects of Quantum Mechanics that are 
peculiar to it, most notably entanglement.

◼ Practical Quantum Computers are a 
significant ways off.
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